Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 341))

Abstract

It is an honor and a pleasure to contribute to and participate in this prestigious course at the University Complutense, directed by the eminent scientist and teacher Dr. Santiago Grisolia. The topic of the course, dealing with the relationships of excess ammonia, liver pathology, and brain deficiency, indicates the interrelationships of the various organs in the body, and also indicates the need for us to identify the processes that are unique to an organ or are of special significance for it. One reason for selecting protein breakdown for discussion was its important relationship to ammonia, its products — amino acids. In general, only 0.1 to 1.0 percent of the amino acids are in the free amino acid pool as compared to the protein-bound forms; therefore, breakdown of only one percent of the proteins would increase the content in the free pool 2–10 fold. Therefore, protein breakdown could have an important influence on ammonia metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudry, M., DuBrin, R., Beasley, L., Leon, M., and Lynch, G., 1986, Low levels of calpain activity inchiroptera brain: Implications for mechanisms of agin, Neurobiol. Aging 7:255–258.

    Article  PubMed  CAS  Google Scholar 

  2. Lynch, G., Larson, J., and Baudry, M., 1986, Proteases, neuronal stability, and brain aging: an hypothesis. In: Treatment Development Strategies for Alzheimer’s Disease, (Crook, T., Bartus, R.T., Ferris, S., and Gershon, S. eds.). Mark Powley Assoc, Inc., Madison, CT, pp. 119–149.

    Google Scholar 

  3. Banay-Schwartz, M., Giuffrida, A. M., DeGuzman, T., Sershen, H., and Lajtha, A., 1979, Effect of undernutrition on cerebral protein metabolism, Exp. Neurol. 65:157–168.

    Article  PubMed  CAS  Google Scholar 

  4. Austin, L., Lowry, O. H., Brown, J. G., and Carter, J. G., 1972, The turnover of protein in discrete areas of rat brain, J. Biochem. 126:351–359.

    CAS  Google Scholar 

  5. Oja, S. S., 1967, Studies on protein metabolism in developing rat brain, Ann. Acad. Sci. Fenn. A5. 131:1–81.

    Google Scholar 

  6. Dunlop, D. S., Van Eiden, W., and Lajtha, A., 1977, Developmental effects on protein synthesis rates in regions of the CNS in vivo and in vitro, J. Neurochem. 29:939–945.

    Article  PubMed  CAS  Google Scholar 

  7. Seta, K., Sansur, M., and Lajtha, A., 1973, The rate of incorporation of amino acids into brain proteins during infusion in the rat, Biochim. Biophys. Acta. 294:472–480.

    Article  PubMed  CAS  Google Scholar 

  8. Dunlop, D. S., Van Elden, W., and Lajtha, A., 1975, A method for measuring brainprotein synthesis rates in young and adult rats, J. Neurochem. 24:337–344.

    Article  PubMed  CAS  Google Scholar 

  9. Lajtha, A., and Toth, J., 1966, Instability of cerebral proteins, Biochem. Biophys. Res. Commun. 23:294–298.

    Article  PubMed  CAS  Google Scholar 

  10. Bracco, F., Banay-Schwartz, M., DeGuzman, T., and Lajtha, A., 1982, Membrane-bound tubulin: resistance to cathepsin D and susceptibility to thrombin, Neurochem. Int. 4:501–511.

    Article  PubMed  CAS  Google Scholar 

  11. Bracco, F., Banay-Schwartz, M., DeGuzman, T., and Lajtha, A., 1982, Brain tubulin breakdown by cerebral cathepsin, D. Neurochem. Int. 4:541–549.

    Article  CAS  Google Scholar 

  12. Lajtha, A., Dunlop, D., Patlak, C., and Toth, J., 1979, Compartments of protein metabolism in the developing brain, Biochim. Biophys. Acta. 561:491–501.

    Article  PubMed  CAS  Google Scholar 

  13. Lajtha, A., Latzkovits, L., and Toth, J., 1976, Comparison of turnover rates of proteins of the brain, liver, and kidney in mouse in vivo following long-term labeling, Biochim. Biophys. Acta. 425:511–520.

    Article  PubMed  CAS  Google Scholar 

  14. Dunlop, D. S., Van Eiden, W., and Lajtha, A., 1978, Protein degradation rates in regions of the central nervous system in vivo during development, J. Biochem. 170:637–642.

    CAS  Google Scholar 

  15. Kenessey, A., Banay-Schwartz, M., DeGuzman, T., and Lajtha, A., 1989, Increase in cathepsin D activity in rat brain in aging, J. Neurosci. Res. 23:454–456.

    Article  PubMed  CAS  Google Scholar 

  16. Matus, A., and Green, G. D. J., 1987, Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated protein, Biochemistry. 26:8083–8086.

    Article  PubMed  CAS  Google Scholar 

  17. Wiederanders, B., and Oelke, B., 1984, Accumulation of inactive cathepsin D in old rats, Mech. Age. Dev. 24:265–271.

    Article  CAS  Google Scholar 

  18. Kenessey, A., Banay-Schwartz, M., DeGuzman, T., and Lajtha, A., 1990, Calpain II activity and calpastatin content in brain regions of 3-and 24-month-old rats, Neurochem. Res. 15:243–249.

    Article  PubMed  CAS  Google Scholar 

  19. Fando, J. L., Slainas, M., and Wasterlain, C. G., 1990, Age-dependent changes in brain protein synthesis in the rat, Neurochem. Res. 5:373–383.

    Article  Google Scholar 

  20. Avola, R., Condorelli, D. F., Ragusa, N., Renis, M., Alberghina, M., Giuffrida Stella, A.M., and Lajtha, A., 1988, Protein synthesis rates in rat brain regions and subcellular fractions during aging, Neurochem. aes. 13:337–342.

    Article  CAS  Google Scholar 

  21. Ingvar, M. C., Maeder, P., Sokoloff, L., and Smith, C. B., 1985, Effects of ageing on local rates of cerebral protein synthesis in Sprague-Dawley rats, Brain 108:155–170.

    Article  PubMed  Google Scholar 

  22. Sayegh, J. F., Sershen, H., and Lajtha, A., 1992, Different effects of hypothermia on amino acid incorporation and on amino acid uptake in the brain in vivo, Neurochem. Res. 17:553–557.

    Article  PubMed  CAS  Google Scholar 

  23. Lajtha, A., and Sershen, H., 1975, Changes in the rates of protein synthesis in the brain of goldfish at various temperatures, Life Sci. 17:1861–1868.

    Article  PubMed  CAS  Google Scholar 

  24. Sayegh, J. D., and Lajtha, A., 1989, In vivo rates of protein synthesis in brain, muscle, and liver of five vertebrate species, Neurochem. Res. 14:1165–1168.

    Article  PubMed  CAS  Google Scholar 

  25. DeMartino, G. N., and Blumenthal, D. K., 1982, Identification and partial purification of a factor that stimulates calcium-dependent proteases, Biochemistry. 21:4297–4303.

    Article  PubMed  CAS  Google Scholar 

  26. Pontremoli, S., Melloni, E., Michetti, M., Sparatore, B., Salamino, F., Siliprandi, N., and Horecker, B. L., 1987, Isovalerylcarnitine is a specific activator of calpain of human neutrophils, Biochem. Biophys. Res. Commun. 148:1189–1195.

    Article  PubMed  CAS  Google Scholar 

  27. Najm, I., Vanderklish, P., Etebari, A., Lynch, G., and Baudry, M., 1991, Complex interactions between polyamines and calpain-mediated proteolysis in rat brain. J. Neurochem. 57:1151–1158.

    Article  PubMed  CAS  Google Scholar 

  28. Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990, Isovalerylcarnitine is a specific activator of the high calcium requiring calpain forms, Biochem. Biophys. Res. Commun. 167:373–380.

    Article  PubMed  CAS  Google Scholar 

  29. Pontremoli, S., Sparatore, B., Salamino, F., Michetti, M., Sacco, O., and Melloni, E., 1985, Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes, Biochem. Int. 11:35–44.

    PubMed  CAS  Google Scholar 

  30. Pontremoli, S., Melloni, E., Salamino, F., Patrone, M., Michetti, M., and Horecker, B. L., 1989, Activation of neutrophil calpain following its translocation to the plasma membrane induced by phorbol ester or fMet-Leu-Phe, Biochem. Biophys. 160:737–743.

    Article  CAS  Google Scholar 

  31. Shiba, E., Ariyoshi, H., Yano, Y., Kawasaki, T., Sakon, M., Kambayashi, J., and Mori, T., 1992, Purification and characterization of a calpain activator from human platelets, Biochem. Biophys. Res. Commun. 182:461–465.

    Article  PubMed  CAS  Google Scholar 

  32. Pontremoli, S., Viotti, P. L., Michetti, M., Sparatore, B., Salamino, F., and Melloni, E., 1990, Identification of an endogenous activator of calpain in rat skeletal muscle, Biochem. Biophys. Res. Commun. 171:569–574.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lajtha, A. (1993). Controls of Cerebral Protein Breakdown. In: Grisolía, S., Felipo, V. (eds) Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, vol 341. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2484-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2484-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6058-2

  • Online ISBN: 978-1-4615-2484-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics