Skip to main content

Thymic Neuroendocrine Self Peptides and t Cell Selection

  • Chapter
In Vivo Immunology

Abstract

Our previous studies have shown that the thymic epithelial cells (TEC) of different animal species were the site for synthesis of polypeptide precursors belonging to the neurohypophysial (NHP), tachykinin (TK), and insulin neuroendocrine families1,2,3,4,5. However, at least in basal conditions, cultured human TEC do not secrete NHP-related peptides, neurokinin A (NKA) nor insulin-like growth factor 2 (IGF2); the existence of a classical secretory pathway in the thymic epithelium may thus be questioned. We also failed to detect immunoreactive (ir) thymic NHP-related peptides in classical secretory granules and a very elegant recent study has demonstrated that ir oxytocin (OT), the dominant thymic NHP-related peptide, was located diffusely in the cytosol and in clear vacuoles of murine TEC6. The term cryptocrine has been introduced in the word-list of Endocrinology to describe this particular type of cell-to-cell signaling in specialized microenvironments constituted by large “nursing” epithelial cells (like TEC/TNC in the thymus, or Sertoli cells in the testis) enclosing cell populations that migrate and differentiate at their very close contact (respectively, T cells and spermatids)7. In the general evolution of cell-to-cell communication, the cryptocrine type of signaling is located at a rather primitive step, between intercellular adhesion and paracrine exchanges of soluble signals. Moreover, in the thymus, the cryptocrine stage is closely associated with the presentation of the self molecular structure to the developing T cell system. Therefore, the thymus appears as one crucial meeting point for the two major systems of intercellular communication: therein, the endocrine system may influence the early steps of the immune response, whereas the immune system is educated in self neuroendocrine principles8. We would like to present here our experimental arguments that permit to transpose at the level of the thymic repertoire of neuroendocrine-related peptides the dual physiological role of this primary lymphoid organ in T cell positive and negative selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Geenen, J.J. Legros, P. Franchimont, M. Baudrihaye, M.P. Defresne, and J. Boniver. The neuroendocrine thymus: Coexistence of oxytocin and neurophysin in the human thymus, Science 232: 508 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. V. Geenen, F. Robert, H. Martens, A. Benhida, G. Degiovanni, M.P. Defresne, J. Boniver, J.J. Legros, J. Martial, and P. Franchimont, At the Cutting Edge. Biosynthesis and paracrine/cryptocrine actions of “self ” neurohypophysial-related peptides in the thymus, Mol. Cell. Endocrinol. 76: C27 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. V. Geenen, N. Cormann-Goffin, H. Martens, A. Benhida, F. Robert, J.J. Legros, J. Martial, and P. Franchimont, Thymic neurohypophysial-related peptides and T cell selection, Regul. Peptides 45: 273 (1993).

    Article  CAS  Google Scholar 

  4. A. Ericsson, V. Geenen, F. Robert, J.J. Legros, Y. Vrindts-Gevaert, P. Franchimont, S. Brené, and H. Persson, Expression of preprotachykinin-A and neuropeptide-Y messenger RNA in the thymus, Molec. Endocrinol. 4: 1211 (1990).

    Article  CAS  Google Scholar 

  5. V. Geenen, I. Achour, F. Robert, E. Vandersmissen, J.C. Sodoyez, M.P. Defresne, J. Boniver, P.J. Lefèbvre, and P. Franchimont, Evidence that insulin-like growth factor (IGF2) is the dominant thymic peptide of the insulin superfamily, Thymus 21: 115(1993).

    PubMed  CAS  Google Scholar 

  6. M. Wiemann and G. Ehret, Subcellular localization of immunoreactive oxytocin within thymic epithelial cells of the male mouse, Cell Tissue Res., in press.

    Google Scholar 

  7. J.W. Funder, At the Cutting Edge. Paracrine, cryptocrine, acrocrine, Mol. Cell. Endocrinol. 70: C21 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. V. Geenen, F. Robert, H. Martens, D. De Groote, and P. Franchimont, The thymic education of developing T cells in self neuroendocrine principles, J. Endocrinol. Invest. 15: 621 (1992).

    PubMed  CAS  Google Scholar 

  9. J. Elands, A. Resink, and E.R. de Kloet, Neurohypophysial hormone receptors in the rat thymus, Endocrinology 126: 2703 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. V. Geenen, F. Robert, M. Fatemi, M.P. Defresne, J. Boniver, J.J. Legros, and P. Franchimont, Vasopressin and oxytocin: thymic signals and receptors in T cell ontogeny, in: “Recent Progress in Posterior Pituitary Hormones,” S. Yoshida and L. Share, eds., Elsevier, New York (1988).

    Google Scholar 

  11. H. Martens, F. Robert, J.J. Legros, V. Geenen, and P. Franchimont, Expression of functional neurohypophysial peptide receptors by immature and cytotoxic T cell lines, Prog. NeuroEndocrinlmmunol. 5: 31 (1992).

    Google Scholar 

  12. O. Söder and P. Hellström, The tachykinins neurokinin A and physalaemin stimulate murine thymocyte proliferation. Int. Arch. Appl. Immunol. 90: 91 (1989).

    Article  Google Scholar 

  13. R.W. Kozak, J.F. Haskell, L.A. Greenstein, M.M. Rechsler, T.A Waldmann, and S.P. Nissley, Type I and II insulin-like growth factor receptors on human phytohemagglutinin-activated T lymphocytes. Cell. Immunol. 109: 318 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. E.W. Johnson, L.A. Jones, and R.W. Kozak, Expression and function of insulin-like growth factor receptors on anti-CD3-activated human T lymphocytes, J. Immunol. 148: 63 (1992).

    PubMed  CAS  Google Scholar 

  15. G.J.V. Nossal, Immunologie tolerance: Collaboration between antigen and lymphokines, Science 245: 147 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. M. Blackman, J. Kappler, and P. Marrack, The role of the T cell receptor in positive and negative selection of developing T cells, Science 248: 1335 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. H. vonBoehmer and P. Kisielow, Self-nonself discrimination by T cells, Science 248: 1369(1990).

    Article  Google Scholar 

  18. J.C. Salaün, A. Bandeira, I. Khazaai, F. Caiman, M. Coltey, A. Coutinho, and N.M. Le Douarin, Thymic epithelium tolerizes for histocompatibility antigens, Science 247: 1471 (1990).

    Article  PubMed  Google Scholar 

  19. S.R. Webb and J. Sprent, Tolerogenecity of thymic epithelium, Eur. J. Immunol. 20: 2525 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. F. Robert, V. Geenen, J. Schoenen, E. Burgeon, D. De Groote, M.P. Defresne, J.J. Legros, and P. Franchimont, Colocalization of immunoreactive oxytocin, vasopressin and interleukin 1 in human thymic epithelial neuroendocrine cells, Brain Behav. and Immun. 5: 102 (1991).

    Article  CAS  Google Scholar 

  21. F. Robert, H. Martens, N. Cormann-Goffin, A. Benhida, J. Schoenen, and V. Geenen, The recognition of hypothalamo-neurohypophysial functions by developing T cells, Dev. Immunol. 2: 131 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. K. Falk, O. Rôtzschke, S. Stevanovic, G. Jung, and H.G. Rammensee, Allele-specific motif revealed by sequencing of self-peptide eluted from MHC molecules, Nature 351: 290 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. V. Geenen, E. Vandersmissen, H. Martens, G. Degiovanni, and P. Franchimont, Evidence for the association between human thymic MHC class I molecules and a dominant neurohypophysial peptide, J. Immunol. 150: 39A (1993).

    Google Scholar 

  24. W.A. Scherbaum and G.F. Bottazzo, Autoantibodies to vasopressin cells in idiopathic diabetes insipidus: Evidence for an autoimmune variant, Lancet I: 897 (1983).

    Article  Google Scholar 

  25. L. Castano and G.S. Eisenbarth, Type I diabetes: A chronic autoimmune disease of human, mouse, and rat, Annu. Rev. Immunol. 8: 647 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. J.M. Sheil, S.E. Shepherd, G.F. Klimo, and Y. Paterson, Identification of an autolo-gous insulin B chain peptide as a target antigen for H-2Kb-restricted cytotoxic T lymphocytes, J. Exp. Med. 175: 545 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geenen, V. et al. (1994). Thymic Neuroendocrine Self Peptides and t Cell Selection. In: Heinen, E., Defresne, M.P., Boniver, J., Geenen, V. (eds) In Vivo Immunology. Advances in Experimental Medicine and Biology, vol 355. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2492-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2492-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6062-9

  • Online ISBN: 978-1-4615-2492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics