Skip to main content

Assessing Impacts of Climate Change on Vegetation Using Climate Classification Systems

  • Chapter
Vegetation Dynamics & Global Change

Abstract

In response to the growing public and scientific concern about global environmental change and its impact on terrestrial ecosystems, a demand for spatially explicit predictions of potential vegetation under increased atmospheric CO2 has appeared (Prentice et al. 1989). Maps based on such predictions are expected to serve as an indication of likely impacts of global warming on natural vegetation (Busby 1988), wildlife (Arnold 1988) and agriculture and forestry (Parry et al. 1988; Graetz et al. 1988). Other important issues which could be addressed are likely changes in biodiversity, as well as levels in and feedback mechanisms between the sources and sinks of the global carbon cycle (Prentice and Fung 1990; Adams et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.M., Faure, H., Faure-Denard, L., McGlade, J.M. and Woodward, F.I. (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 348, 711–4.

    Article  CAS  Google Scholar 

  • Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly distributed datapoints. ACM Transactions in Mathmatical Software, 4, 148–59.

    Article  Google Scholar 

  • Andersson, L. (1989a). Soil moisture deficits in South-Central Sweden. I. Seasonal and regional distributions. Nordic Hydrology, 20, 109–22.

    Google Scholar 

  • Andersson, L. (1989b). Soil moisture deficits in South-Central Sweden. II. Trends and fluctuations. Nordic Hydrology, 20, 123–36.

    Google Scholar 

  • Arnold, G.W. (1988). Possible effects of climatic change on wildlife in Western Australia. In, Greenhouse. Planning for Climate Change, ed. G.I. Pearman, pp. 375–86. Leiden: E.J. Brill.

    Google Scholar 

  • Bach, W. (1988). Development of climatic scenarios: A. From general circulation models. In The Impact of Climatic Variations on Agriculture. Volume 1: Assessments in Cool Temperate and Cold Regions, ed. M.L. Parry, T.R. Carter and N.T. Konijn, pp. 125–57. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Blaesdale, A. and Chan, Y.K. (1972). Orographic influences on the distributions of precipitation. In Distribution of Precipitation in Mountainous Areas. Symposium Geilo, Norway, July–August 1972. WMO/OMM No. 326, Geneva, Switzerland.

    Google Scholar 

  • Blasing, T.J. and Solomon, A.M. (1984). Response of the North American Corn Belt to climatic warming. Progress in Biometeorology, 3, 311–21.

    Google Scholar 

  • Bonan, G.B. and Korzukhin, M.D. (1989). Simulation of moss and tree dynamics in the boreal forest of interior Alaska. Vegetatio, 84, 31–44.

    Article  Google Scholar 

  • Boryczka, J. and Stopa-Boryczka, M. (1986). A mathematical model of Poland’s climate. Miscellanea Geographica, 1986, 55–69.

    Google Scholar 

  • Box, E.O. (1981). Macroclimate and Plant Forms: an Introduction to Predictive Modeling in Phytogeography. The Hague: Dr. W. Junk Publishers.

    Google Scholar 

  • Boysen-Jensen, P. (1949). Causal plant geography. Det Kongelige Danske Videnskabernes Selskab, Biologiske Meddelelser, 21(3).

    Google Scholar 

    Google Scholar 

  • Bradley, R.S., Kelly, P.M., Jones, P.D., Diaz, H.F. and Goodess, C. (1985). A climatic data bank for the Northern Hemisphere land areas. 1851–1980. DOE Technical Report No. 017. U.S. Department of Energy, Carbon Dioxide Research Division, Washington, D.C.

    Google Scholar 

  • Busby, J.R. (1988). Potential impacts of climate change on Australia’s flora and fauna. In Greenhouse. Planning for Climate Change, ed. G.I. Pearman, pp. 387–98. Leiden: E.J. Brill.

    Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurements, 20, 37–46.

    Article  Google Scholar 

  • Cramer, W. and Leemans, R. (1990). Static vegetation models and climate change on high latitudes. Paper presented at the symposium on “Boreal Forests: State, Dynamics and Anthropogenic Influences.” Arkhangelsk, USSR, July 1990.

    Google Scholar 

  • Cramer, W. and Prentice, I.C. (1988). Simulation of regional soil moisture deficits on a European scale. Norsk Geografisk Tidskrift, 42, 149–51.

    Article  Google Scholar 

  • Davis, M.B. (1981). Quaternary history and the stability of forest communities. In Forest Succession: Concepts and Application, ed. D.C. West, H.H. Shugart and D.B. Botkin, pp. 132–54. New York: Springer-Verlag.

    Google Scholar 

  • de Candolle, A.L. (1855). Géographie Botanique Raisonée. Paris: Victor Masson & Gen’eve: J. Kessmann.

    Google Scholar 

  • Delijaniec, I. (1972). The characteristic change of the amount of precipitation in connexion with altitude in the mountainous areas of Yugoslavia. In Distribution of Precipitation in Mountainous Areas. Symposium Geilo, Norway, July–August 1972. WMO/OMM No. 326, Geneva, Switzerland.

    Google Scholar 

  • Emanuel, W.R., Shugart, H.H. and Stevenson, M.P. (1985a). Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7, 29–43.

    Article  Google Scholar 

  • Emanuel, W.R., Shugart, H.H. and Stevenson, M.P. (1985b). Response to comment: Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7, 457–60.

    Article  Google Scholar 

  • Graetz, R.D., Walker, B.H. and Walker, P.A. (1988). The consequences of climatic change for seventy percent of Australia. In Greenhouse. Planning for Climate Change, ed. G.I. Pearman, pp. 399–413. Leiden: E.J. Brill.

    Google Scholar 

  • Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. and Lerner, J. (1984). Climate sensitivity: analysis of feedback mechanisms. In Climate Processes and Climate Sensitivity, ed. J. Hansen and T. Takahashi, pp. 130–63. American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Harrison, S.P. (1990). An introduction to general circulation modelling experiments with raised CO 2 . WP-90-27, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Hearne, S. (1772). A Journey from Prince of Wales Fort in Hudson’s Bay to the Northern Oceans in the Years 1769, 1770, 1771, and 1772. Toronto: The Champlain Society.

    Google Scholar 

  • Holdridge, L.R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367–8.

    Article  PubMed  CAS  Google Scholar 

  • Holdridge, L.R. (1967). Life Zone Ecology. San José: Tropical Science Center.

    Google Scholar 

  • Houghton, J.T, Jenkins, G.J. and Ephraums, J.J. (1990). CLIMATE CHANGE—The IPCC Scientific Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hutchins, L.W. (1947). The bases for temperature zonation in geographical distribution. Ecological Monographs, 17, 325–35.

    Article  Google Scholar 

  • Hutchins, L.W. (1947). The bases for temperature zonation in geographical distribution. Ecological Monographs, 17, p73

    Article  Google Scholar 

  • Khurshid Alam, F.C. (1972). Distribution of precipitation in mountainous areas of west Pakistan. In Distribution of Precipitation in Mountainous Areas. Symposium Geilo, Norway, July–August 1972. WMO/OMM No. 326, Geneva, Switzerland.

    Google Scholar 

  • Kojima, S. (1979). Biogeoclimatic zones of Hokkaido Island, Japan. Journal of the College of Liberal Arts, Toyama University, Japan, 12, 97–141.

    Google Scholar 

  • Köpen, W. (1884). (De)Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorologische Zeitschrift, 1, 215–26 plus map.

    Google Scholar 

  • Köppen, W. (1936). Das geographische System der Klimate. In Handbuch der Klimatologie, ed. W. Köppen and R. Geiger. Berlin: Gebrüder Bornträger.

    Google Scholar 

  • Krajina, V.J. (1959). Bioclimatic zones in British Columbia. University of British Columbia, Botanical Series, 1, 1–47.

    Google Scholar 

  • Landis, J.R. and Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–74.

    Article  PubMed  CAS  Google Scholar 

  • Leemans, R. (1989). Possible changes in natural vegetation patterns due to a global warming. In Der Treibhauseffekt: Das Problem—Mögliche Folgen—Erforderliche Massnahmen, ed. A. Hackl, pp. 105–22. Laxenburg, Austria: Akademie für Umwelt und Energie.

    Google Scholar 

  • Leemans, R. and Cramer, W. (1990). The IIASA climate database for land areas on a grid with 0.5° resolution. WP-90-41, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Linnaeus, C. (1977). Iter Lapponicum, Dei Grata Institutum 1732 [Lapplands Resa År 1732], ed. M. von Platen and C.-O. von Sydow. Stockholm: Wahlström & Widstrand.

    Google Scholar 

  • Manabe, S. and Wetherald, R.T. (1980). On the distribution of climatic change resulting from an increase in CO2 content of the atmosphere. Journal of Atmospheric Science, 37, 99–118.

    Article  Google Scholar 

  • Merriam, C.H. (1898). Life zones and crop zones of the United States. Bulletin US Department of Agriculture, Division Biological Survey, 10.

    Google Scholar 

  • Meteorological Office (1966). Tables of temperature, relative humidity and precipitation for the world. Part V. Asia. HMSO, London.

    Google Scholar 

  • Meteorological Office (1972). Tables of temperature, relative humidity, precipitation and sunshine for the world. Part III. Europe and the Azores. HMSO, London.

    Google Scholar 

  • Meteorological Office (1973). Tables of emperature, relative humidity and precipitation for the world. Part VI. Australasia and Pacific Ocean. HMSO, London.

    Google Scholar 

  • Meteorological Office (1978). Tables of temperature, relative humidity and precipitation for the world. Part II. Central and South America, the West Indies and Bermuda. HMSO, London.

    Google Scholar 

  • Meteorological Office (1980). Tables of temperature, relative humidity, precipitation and sunshine for the world. Part I. North America and Greenland (including Hawaii and Bermuda). HMSO, London.

    Google Scholar 

  • Meteorological Office (1983). Tables of temperature, relative humidity, precipitation and sunshine for the world. Part IV. Africa, the Atlantic Ocean South 35° N and the Indian Ocean. HMSO, London.

    Google Scholar 

  • Mitchell, J.F.B. (1983). The seasonal response of a general circulation model to changes in CO2 and sea temperatures. Quarterly Journal of the Royal Meteorological Society, 109, 113–52.

    CAS  Google Scholar 

  • Mitchell, J.F.B., Wilson, C.A. and Cunnington, W.M. (1987). On CO2 climate sensitivity and model dependence of results. Quarterly Journal of the Royal Meteorological Society, 113, 293–322.

    Article  CAS  Google Scholar 

  • Monserud, R.A. (1990). Methods for comparing global vegetation maps. WP-90-40, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Müller, M.J. (1982). Selected climatic data for a global set of standard stations for vegetation science. The Hague: Dr. W. Junk Publishers.

    Book  Google Scholar 

  • National Geophysical Data Center (1988). 10-minute topography database. U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Ohsawa, M. (1990). An interpretation of latitudinal patterns of forest limits in South and East Asian mountains. Journal of Ecology, 78, 326–39.

    Article  Google Scholar 

  • Olson, J., Watts, J. A. and Allison, L.J. (1983). Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Overpeck, J.T., Rind, D. and Goldberg, R. (1990). Climate-induced changes in forest disturbance and vegetation. Nature, 343, 51–3.

    Article  Google Scholar 

  • Parry, M.L., Carter, T.R. and Konijn, N.T. (1988). The Impact of Climatic Variations on Agriculture. Volume 1: Assessments in Cool Temperate and Cold Regions. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Pastor, J. and Post, W.M. (1985). Development of a linked forest productivity-soil process model. ORNL/TM-9519, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Prentice, I.C. (1986). Vegetation response to past climatic variation. Vegetatio, 67, 131–41.

    Article  Google Scholar 

  • Prentice, I.C. (1988). Paleoecology and plant population dynamics. Trends in Ecology and Evolution, 3, 343–5.

    Article  Google Scholar 

  • Prentice, I.C, Webb, R.S., Ter-Mikhaelian, M.T., Solomon, A.M., Smith, T.M., Pitovranov, S.E., Nikolov, N.T., Minin, A.A., Leemans, R., Lavorel, S., Korzukhin, M.D., Helmisaari, H.O., Hrabovszky, J.P., Harrison, S.P., Emanuel, W.R. and Bonan, G.B. (1989). Developing a global vegetation dynamics model: results of an IIASA summer workshop. RR-89-7, International Institute for Applied System Analysis, Laxenburg, Austria.

    Google Scholar 

  • Prentice, K.C. and Fung, I.Y. (1990). The sensitivity of terrestrial carbon storage to climate change. Nature, 346, 48–51.

    Article  Google Scholar 

  • Priestley, C.H.B, and Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92.

    Article  Google Scholar 

  • Raunkiaer, C. (1907). Planterigets Livsformer. Copenhagen/Kristiania: Gyldalska Bokhandel & Nordisk Forlag.

    Google Scholar 

  • Ritchie, J.C. (1986). Climate change and vegetation response. Vegetatio, 67, 65–74.

    Article  Google Scholar 

  • Rydén, B.E. (1972). On the problem of vertical distribution of precipitation, especially in areas with great height differences. In Distribution of Precipitation in Mountainous Areas. Symposium Geilo, Norway, July–August 1972. WMO/OMM No. 326, Geneva, Switzerland.

    Google Scholar 

  • Sargent, N.E. (1988). Redistribution of the Canadian boreal forest under a warmed climate. Climatological Bulletin, 22, 23–34.

    Google Scholar 

  • Schlesinger, M.E. and Mitchell, J.F.B. (1987). Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Reviews of Geophysics, 25, 760–98.

    Article  Google Scholar 

  • Schlesinger, M.E. and Zhao, Z.-C. (1989). Seasonal climatic changes induced by doubled CO2 as simulated by the OSU atmospheric GCM/mixed-layer ocean model. Journal of Climate, 2, 459–95.

    Article  CAS  Google Scholar 

  • Schouw, J.F. (1823). Grundzüge einer allgemeinen Pflanzengeographie. Berlin: Reimer.

    Google Scholar 

  • Solomon, A.M. (1986). Transient responses of forests to CO2-induced climate change: Simulation modeling in eastern North America. Oecologia, 68, 567–79.

    Article  Google Scholar 

  • Sowell, J.B. (1985). A predictive model relating North American plant formations and climate. Vegetatio, 60, 103–11.

    Article  Google Scholar 

  • Storr, D. and Ferguson, H.L. (1972). The distribution of precipitation in some mountainous Canadian watersheds. In Distribution of Precipitation in Mountainous Areas. Symposium Geilo, Norway, July–August 1972. WMO/OMM No. 326, Geneva, Switzerland.

    Google Scholar 

  • Strahler, A. and Strahler, A. (1989). Elements of Physical Geography. New York: John Wiley & Sons.

    Google Scholar 

  • Su, H.-J. (1984). Studies on the climate and vegetation types of the natural forests in Taiwan (I). Analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry, 17, 1–14.

    Google Scholar 

  • Sukachev, V.N. (1958). (On the principles of genetic classification in biocoenology). Condensed translation of ‘O principi geneticeskoj klassifikacii v biocenologii’ by F. Raney and R.F. Daubenmire. Ecology, 39, 364–7.

    Article  Google Scholar 

  • Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geographical Reviews, 38, 55–94.

    Article  Google Scholar 

  • Thornthwaite, C.W. and Mather, J.R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology, 10, 185–310.

    Google Scholar 

  • Troll, C. and Paffen, K. (1964). Die Jahreszeitenklimate der Erde (Summary: The seasonal climates of the earth). Erdkunde, 18, 1–28 plus map.

    Google Scholar 

  • Tucker, G.B. (1988). Climate modelling: how does it work? In Greenhouse. Planning for Climate Change, ed. G.I. Pearman, pp. 22–34. Leiden: E.J. Brill.

    Google Scholar 

  • Tuhkanen, S. (1980). Climatic parameters and indices in plant geography. Acta Phytogeographica Suecica, 67.

    Google Scholar 

  • von Humboldt, A. (1807). Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Tübingen.

    Google Scholar 

  • Walter, H. (1964). Die Vegetation der Erde in ökophysiologischer Betrachtung. Vol. 1. 2nd ed. Jena: VEB Gustav Fischer Verlag.

    Google Scholar 

  • Walter, H. and Lieth, H. (1960–67). Klimadiagramm-Weltatlas. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Warrick, R.A., Shugart, H.H., Antonovsky, M.Ya., Tarrant, J.R. and Tucker, C.J. (1986). The effects of increased CO2 and climatic change on terrestrial ecosystems. In The Greenhouse Effect, Climate Change, and Ecosystems, ed. B. Bolin, B.R. Döös, J. Jäger and R.A. Warrick, pp. 363–92. Chichester: John Wiley & Sons.

    Google Scholar 

  • Weather Bureau (1959). World Weather Records 1941–1950. U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Webb, III, T. (1986). Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio, 67, 119–30.

    Article  Google Scholar 

  • Webb, III, T. (1987). The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America. Vegetatio, 69, 177–87.

    Article  Google Scholar 

  • Willmott, C.J. and Rowe, CM. (1985). Climatology of the terrestrial seasonal water cycle. Journal of Climatology, 5, 589–606.

    Article  Google Scholar 

  • Wilson, C.A. and Mitchell, J.F.B. (1987). Simulated climate and CO2-induced climate change over western Europe. Climatic Change, 10, 11–42.

    Article  CAS  Google Scholar 

  • Wilson, E.O. (1989). Threats to biodiversity. Scientific American, 261, 60–6.

    Article  Google Scholar 

  • Woodward, F.I. (1987). Climate and Plant Distribution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Woodward, F.I. (1989). Plants in the greenhouse world. New Scientist, 21, 1–4.

    Google Scholar 

  • Woodward, F.I. and Williams, B.G. (1987). Climate and plant distribution at global and local scales. Vegetatio, 69, 189–97.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cramer, W.P., Leemans, R. (1993). Assessing Impacts of Climate Change on Vegetation Using Climate Classification Systems. In: Solomon, A.M., Shugart, H.H. (eds) Vegetation Dynamics & Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2816-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2816-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6217-3

  • Online ISBN: 978-1-4615-2816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics