Skip to main content

Biological Role of Human Cytosolic Aldehyde Dehygrogenase 1: Hormonal Response, Retinal Oxidation and Implication in Testicular Feminization

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 328))

Abstract

A number of aldehyde dehydrogenase isozymes are distinguished based on the separation by physicochemical methods,, tissue and subcellular distributions, and enzymatic properties. Although ALDH isozymes are usually assayed with short chain aliphatic aldehydes as substrate, they exhibit relatively broad substrate specificities and can oxidize various biogenic and xenobiotic aliphatic and aromatic aldehydes including dopaldehyde and aminaldehydes. However, their physiological substrates are not identified and the primary biological roles of individual ALDH isozymes are not yet clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambroziak W, Pietruszko R:. Human aldehyde dehydrogenase activity with aldehyde metabolites of monoamines, diamines and polyamines. J. Biol. Chem., 1991; 266: 13011–13018.

    PubMed  CAS  Google Scholar 

  • Connor MJ, Smit MH: Terminal-group oxidation of retinol by mouse epidermis: Inhibition in vitro and in vivo. Biochem. J., 1987; 244: 489–492.

    Google Scholar 

  • DeLuca LM: Retinoids and their receptors in differentiation, embryogenesis and neoplasia. FASEB Jour., 1991; 5: 2924–2933.

    CAS  Google Scholar 

  • Duester G, Shean ML, McBride MS, Stewart MJ: Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: Implications for regulation of retinoic acid synthesis. Mol. Cell. Biol., 1991; 11: 1638–1646.

    PubMed  CAS  Google Scholar 

  • Elder TD, Topper YJ: The oxidation of retinine (vitamin Al aldehyde) to vitamin A acid by mammalian steroid-sensitive aldehyde dehydrogenase, Bioch. Biophys. Acta, 1962; 64: 430–437.

    Article  CAS  Google Scholar 

  • Evans RM: The steroid and thyroid hormone receptor superfamily. Science, 1988; 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Hsu L

    Google Scholar 

  • Chang W-C: Cloning and characterization of a new functional human aldehyde dehydrogenase gene. J. Biol. Chem., 1991; 266: 12257–12265.

    PubMed  Google Scholar 

  • Hsu LC, Chang W-C, Shibuya A, Yoshida A: Human stomach aldehyde dehydrogenase cDNA and genomic cloning, primary structure and expression in E.coli. J. Biol. Chem. 1991; 267: 3030–3037.

    Google Scholar 

  • Hsu LC, Chang W-C, Yoshida A: Genomic structure of the human cytosolic aldehyde dehydrogenase gene. Genomics 1989; 5: 857865.

    Google Scholar 

  • Ikawa M, Impraim CC, Wang G, Yoshida A: Isolation and characterization of aldehyde dehydrogenase isozymes from usual and atypical human livers. J. Biol. Chem. 1983; 258: 6282–6287.

    PubMed  CAS  Google Scholar 

  • Ikuta T, Yoshida A: mRNA for the three human alcohol dehydrogenase subunits: size heterogeneity and developmental changes. Bioch. Biophys. Res. Commun. 1986; 140: 1020–1027.

    Article  CAS  Google Scholar 

  • Lee M-0, Manthey CL, Sladek NE: Identification of mouse liver aldehyde dehydrogenases that catalyze the oxidation of retinaldehyde to retinoic acid. Bioch. Pharmacol. 1991; 42: 1279–1285.

    Article  CAS  Google Scholar 

  • Leo MA, Kim C-I, Lowe N, Lieber CS: Increased hepatic retinal dehydrogenase activity after phenobarbital and ethanol administration. Biochem. Pharmacol. 1989; 38: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Maxwell ES, Topper YJ: Steroid-sensitive aldehyde dehydrogenase from rabbit liver. J Biol Chem 1961; 236: 1032 1037.

    Google Scholar 

  • McCormick AM, Napali JL: Identification of 5,6-epoxy-retinoic acid as an endogeneous retinol metabolite. J Biol Chem 1982; 257: 1730–1735.

    PubMed  CAS  Google Scholar 

  • Moffa DJ, Lotspeich FJ, Krause RF: Preparation and properties of retinal-oxidizing enzyme from rat intestinal mucosa. J Biol Chem 1970; 245: 439447.

    Google Scholar 

  • Napali JL: Retinal metabolism in Lic-PKI cells: Characterization of retinoic acid synthesis by an established mammalian cell line. J Biol Chem 1986; 261: 13592–13597.

    Google Scholar 

  • Nickel B, Schwartz A, Rosemann E, Kaufman M, Pinsky L, Wrogemann K: A study of androgen-resistant subjects indicates that the 6.7 pi/56 KDa protein in genital skin fibroblasts is related to the androgen receptor. Clin Inv Med 1988; 11: 23–33.

    Google Scholar 

  • Pereira F, Rosemann E, Nylen E, Kaufman M, Pinsky L, Wrogemann K: The 56 KDa androgen, binding protein is an aldehyde dehydrogenase. Biochem Biophys Res Commun 1991; 175: 831–838.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW and Brockes JP: Retinoids and their targets in vertebrate development. Current opinion in Cell Biol. 1991; 3: 928–934.

    Article  CAS  Google Scholar 

  • Yamamoto KR: Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 1985; 19: 209–252.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Hsu LC, Yasunami M: Genetics of human alcohol-metabolizing enzymes. Prog Nucleic Acid Res and Mol Biol 1991; 40: 255–287.

    Article  CAS  Google Scholar 

  • Yun SL, Suelter CH: A simple method for calculating Km and V from single enzyme reaction progress curve. Bioch Biophys Acta 1977; 480: 1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshida, A., Hsu, L.C., Yanagawa, Y. (1993). Biological Role of Human Cytosolic Aldehyde Dehygrogenase 1: Hormonal Response, Retinal Oxidation and Implication in Testicular Feminization. In: Weiner, H., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 4. Advances in Experimental Medicine and Biology, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2904-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2904-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6259-3

  • Online ISBN: 978-1-4615-2904-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics