Skip to main content

Regulation of Energy Flux of Yeast during Steady State and Oscillatory Growth

  • Chapter
Modern Trends in Biothermokinetics

Abstract

Baker’s and brewer’s yeast Saccharomyces cerevisiae is a microorganism of major industrial importance, both within traditional and new branches of industry. For effective control of biotechnological yeast processes, an improved understanding of metabolic regulation in yeast is necessary in combination with development of effective control variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Kuenzi and A.Fiechter, Change in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae, Arch. Microbiol. 64:396–407 (1969).

    CAS  Google Scholar 

  2. H.K. von Meyenburg, Stable synchrony oscillations in continuous cultures of S. cerevisiae under glucose limitation, in: “Biological and Biochemical Oscillators,” B. Chance, E.K. Pye, T.K. Ghosh and B. Hess, eds, Academic Press, New York (1973), p. 411–417.

    Google Scholar 

  3. C.-I. Chen, K.A. McDonald and L.Bisson, Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture: I. Effects of pH and nitrogen levels, Biotech. Bioeng. 36:19–27 (1990).

    Article  CAS  Google Scholar 

  4. C.-I. Chen and K.A. McDonald, Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture:II. Analysis of cell synchronization and metabolism, Biotech. Bioeng. 36:28–38 (1990).

    Article  CAS  Google Scholar 

  5. R. Grosz and G. Stephanopoulos, Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae. I: Hysteresis, oscillations and maximum specific ethanol productivities in chemostat culture, Biotech. Bioeng. 36:1006–1019 (1990).

    Article  CAS  Google Scholar 

  6. E. Martegani, D. Porro, B.M. Ranzi and L.Alberghina, Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotech. Bioeng. 36:453–459 (1990).

    Article  CAS  Google Scholar 

  7. L. Gustafsson, Microbiological calorimetry, Thermochim. Acta 193:145–171 (1991).

    Article  CAS  Google Scholar 

  8. J.C. Anand and A.D. Brown , Growth rate patterns of the so-called osmophilic and non-osmophilic yeasts in solutions of polyethylene glycol, J. Gen. Microbiol. 52:205–212 (1968).

    Article  CAS  Google Scholar 

  9. R. Ölz, K. Larsson, L. Adler and L. Gustafsson, Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress, J. Bacteriol. ,in press.

    Google Scholar 

  10. A. Blomberg and L. Adler, Physiology of osmotolerance in fungi, Adv. Microbial Physiol. 33:145–212 (1992).

    Article  CAS  Google Scholar 

  11. J.A. Roels. “Energetics and Kinetics in Biotechnology,” Elsevier, Amsterdam (1983).

    Google Scholar 

  12. A. Blomberg, C. Larsson and L.Gustafsson, Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: Osmotolerance in relation to physiological state, J. Bacteriol. 170:4562–4568 (1988).

    PubMed  CAS  Google Scholar 

  13. E. Gnaiger, Concepts on efficiency in biological calorimetry and metabolic flux control, Thermochim. Acta 172:31–52 (1990).

    Article  CAS  Google Scholar 

  14. O. Kedem and S.R. Caplan, Degree of coupling and its relation to efficiency in energy conversion, Trans. Faraday Soc. 61:1897–1911 (1965).

    Article  CAS  Google Scholar 

  15. H. Westerhoff and K.van Dam. “Thermodynamics and Control of Biological Free-Energy Transduction,”Elsevier, Amsterdam (1987).

    Google Scholar 

  16. U. von Stockar, Ch. Larsson and I.W. Marison, Calorimetry and energetic efficiencies in aerobic and anaerobic microbial growth, Pure Appl. Chem. ,in press.

    Google Scholar 

  17. M. Rutgers, H.M.L. van der Gulden and K. van Dam, Thermodynainic efficiency of bac-terial growth calculated from growth yield of Pseudomonas oxalaticus 0X1 in the chemostat, Biochim. Biophys. Acta 973:302–307 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. E. Gnaiger, Optimum efficiencies of energy transformation in anoxic metabolism. The strategies of power and economy, in: “Evolutionary Physiological Ecology,” P. Calow, ed., Cambridge Univ. Press, London (1987), pp. 7–36.

    Google Scholar 

  19. D.G. Fraenkel, Carbohydrate metabolism, in: “The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression,” N.J. Strathern, E.W. Jones and J.R. Broad, eds, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982), pp. 1–37.

    Google Scholar 

  20. C. Wills, T. Martin and T. Melham, Effect on gluconeogenesis of mutants blocking two mitochondrial transport systems in the yeast Saccharomyces cerevisiae, Arch. Biochem. Biophys. 246:306–320 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ölz, R., Larsson, K., Larsson, C., Gnaiger, E., Gustafsson, L. (1993). Regulation of Energy Flux of Yeast during Steady State and Oscillatory Growth. In: Schuster, S., Rigoulet, M., Ouhabi, R., Mazat, JP. (eds) Modern Trends in Biothermokinetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2962-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2962-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6288-3

  • Online ISBN: 978-1-4615-2962-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics