Skip to main content

Diode Lasers and Metrology

  • Chapter
Solid State Lasers

Part of the book series: NATO ASI Series ((NSSB,volume 317))

  • 266 Accesses

Abstract

At NIST in Boulder we have been pursuing an active research program developing diode-laser technology for scientific applications. Commercial diode lasers are readily available in a few wavelength bands in the red and near IR region of the spectrum. Our work has focused on the AlGaAs, InGaAlP, and InGaAsP lasers that operate at room temperature in the red and near IR region of the spectrum between 650 nm and 1.5 microns. These lasers have a number of recognized advantages, including: high efficiency, low cost, tunability, and moderate power levels (~1 to 100 mW). Increasing interest in applying diode lasers to science in general and spectroscopy in particular has stimulated a number of recent reviews on the subject.1–4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Camparo, The diode laser in atomic physics, Contemp. Phys. 26, 443, (1985).

    Google Scholar 

  2. M. Ohtsu and T. Tako, Coherence in semiconductor lasers, in: “Progress in Optics XXV,” E. Wolf ed., Elsevier, p. 193, (1988).

    Google Scholar 

  3. J. Lawrenz, K. Niemax, A semiconductor diode laser spectrometer for laser spectrochemistry, Spectrochimica Acta. 44B, 155, (1989).

    ADS  Google Scholar 

  4. C. Wieman and L. Hollberg, Using diode lasers for atomic physics, Rev. Sci. Inst. 62,1, (1991).

    Article  ADS  Google Scholar 

  5. E.M. Belenov, V.L. Velichansky, A.S. Zibrov, V.V. Nikitin, V.A. Sautenkov, V.A. Uskov, Methods for narrowing the emmision line of an injection laser, Sov. J. Quant. Elect. 13, 792, (1983).

    Article  ADS  Google Scholar 

  6. A. Akul’shin, V. Bazhenov, V. Velichansky, M. Zverkov, A. Zibrov, V. Nikitin, O. Okhotnikov, V. Sautenkov, N. Senkov, E. Yurkin, Sov. J. Quant. Elect. .16, 912, (1986).

    Article  ADS  Google Scholar 

  7. I.P. Kaminow, G. Eisenstein, and L.W. Stulz, Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode, IEEE J. Quant. Elect. 19, No. 4, 493, (1983).

    Article  ADS  Google Scholar 

  8. H. Ukita, K. Mise, and Y. Katagiri, Simple Measurement of the Reflectivity of Antireflection-Coated Laser Diode Facets, Jap. J. Appl. Phys. 27, L1128, (1988).

    Article  ADS  Google Scholar 

  9. P. Zorabedian, W.R. Trutna Jr., and L.S. Cutler, Bistability in Grating-Tuned External Cavity Semiconductor Lasers, IEEE J. Quant. Elect. 23, 1855 (1987).

    Article  ADS  Google Scholar 

  10. Mention of specific commercial laser products does not constitute an endorsement but is made to clarify the particulars of our experiments. Other devices may be better suited to this type of application.

    Google Scholar 

  11. G.C. Turk, J.C. Travis, J.R. DeVoe and T.C. O’Haver, Laser Enhanced Ionization Spectrometry in Analytical Flames, Anal. Chem. 51, No. 12, 1890 (1979).

    Article  Google Scholar 

  12. L. Hollberg, R. Fox, N. Mackie, A.S. Zibrov, V.L. Velichansky, R. Ellingsen, and H.G.Robinson, Diode Lasers and Spectroscopic Applications, in: “Tenth International conference on Laser Spectroscopy,” M. Ducloy, E. Giacobino and G. Camy, p. 347, World Scientific, (1992).

    Google Scholar 

  13. B. Dahmani, L. Hollberg, R. Drullinger, Frequency stabilization of semiconductor lasers by resonant optical feedback, Opt. Lett. 12, 876, (1987).

    Article  ADS  Google Scholar 

  14. Ph. Laurent, A. Clairon and Ch. Breant, Frequency Noise Analysis of Optically Self-Locked Diode Lasers, IEEE J. Quant. Elect. 25, No. 6, p. 1131, (1989).

    Article  ADS  Google Scholar 

  15. H. Li and H.R. Teile, Efficient Frequency Noise Reduction of GaAlAs Semiconductor Lasers by Optical Feedback from an External High-Finesse Resonator, IEEE J. Quant. Elect. 25, No. 3, 257, (1989).

    Article  ADS  Google Scholar 

  16. J. Hough, D. Hils,M. D. Rayman, Ma L.-S.,L. Hollberg, and J. L. Hall, Dye-Laser Frequency Stabilization Using Optical Resonators, Appl. Phys. B 33 ,179, (1984).

    ADS  Google Scholar 

  17. H.-U. Daniel, B. Maurer and M. Steiner, A broadband Schottky Point contact mixer for visible laser light and microwave harmonics, Appl. Phys. B 30, 189, (1983).

    Article  ADS  Google Scholar 

  18. J.C. Bergquist, H.-U. Daniel, A wideband frequency-offset-locked dye laser spectrometer using a Schottky barrier mixer, Opts. Comm. 48, 327, 1984.

    Article  ADS  Google Scholar 

  19. A.M. Akulshin, A.A. Celikov and V.L. Velichansky, Nonlinear Doppler-free spectroscopy of the 61S0–63P1 intercombination transition in barium, Optics Comm. 93, 54 (1992).

    Article  ADS  Google Scholar 

  20. G.M. Tino, M. Barsanti, M. de Angelis, L. Gianfrani and M. Ingusicio, Spectroscopy of the 689nm intercombination line of strontium using and extended-cavity InGaP/InGaAlP diode laser, Appl. Phys. B 55, 397, (1992).

    Article  ADS  Google Scholar 

  21. J.C. Bergquist, R.L. Barger and D.J. Glaze, in: “Laser Spectroscopy IV,” H. Walther and K.W. Rothe eds., Springer-Verlag, p. 120, (1979).

    Google Scholar 

  22. J. Helmcke, A. Morinaga, J. Ishikawa and F. Riehle, Optical Frequency Standards, IEEE Trans. Inst. Meas. 38, 524, (1989).

    Article  ADS  Google Scholar 

  23. N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, and G. Vissani, Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam, J. Opt. Soc. Am. B 6, No. 11, p. 2188, (1989).

    Article  ADS  Google Scholar 

  24. T. Kurosu, F. Shimizu, Laser Cooling and Trapping of Calcium and Strontium, Jap.J. Appl. Phys. 29, L2127, (1990).

    Article  ADS  Google Scholar 

  25. T. Andreae, W. König, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, and T.W. Hansch, Absolute Frequency Measurement of the Hydrogen 1S-2S Transition and a New Value for the Rydberg Constant, Phys. Rev. Lett. 69, 1923, (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fox, R. et al. (1993). Diode Lasers and Metrology. In: Inguscio, M., Wallenstein, R. (eds) Solid State Lasers. NATO ASI Series, vol 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2998-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2998-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6306-4

  • Online ISBN: 978-1-4615-2998-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics