Skip to main content

Development of Descending Projection Neurons to the Spinal Cord of the Goldfish, Carassius auratus

  • Chapter
Development of the Central Nervous System in Vertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 234))

Abstract

The descending supra-spinal projection neurons, especially certain reticulospinal neurons, have been implicated in the integration of spatial and temporal aspects of certain sensory modalities such as taste in teleost (Kanwal & Finger, ′88). In addition it has been postulated that reticulospinal neurons are involved in modulating the locomotion behavior in fish (Bando, ′75; McClellan & Grillner, ′84). Furthermore, sexual behavior in goldfish is controlled by preoptico-spinal pathway (Demski & Sloane, ′85). Mauthner cells (reticulospinal neurons) are involved in eliciting the startle response (Eaton & Bompardieri, ′78). These few examples attest to the varied influences of supra-spinal projection neurons onto the behavior of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bando, T. (1975) Synaptic organization in teleost spinal motor neurons. JAP. J. Physiol. 25:317–331.

    Article  CAS  Google Scholar 

  • Bell, C.C., Finger, T.E. and Russel, C.J. (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp. Brain Res. 42: 9–22.

    Article  PubMed  CAS  Google Scholar 

  • Cabana, T. and Martin, G.F. (1982) The origin of brainstem-spinal projections at different stages of development in the North American opossum. Dev. Brain Res. 2: 163–168.

    Article  Google Scholar 

  • Cabana, T. and Martin, G.F. (1984) Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virqiniana). Dev. Brain Res. 15: 247–263.

    Article  Google Scholar 

  • Coghill, G.E. (1929) Anatomy of the problem of behavior. Cambridge Univ. Press.

    Google Scholar 

  • Demski, L.S. and Sloan, H.E. (1985) A direct magnocellular-preoptic spinal pathway in goldfish. Implication for control of sexual behavior. Neuroscience Lett. 55:283–288.

    Article  CAS  Google Scholar 

  • Eaton, R.C. and Bompardieri, R.A. (1978) Behavioral function of the Mauthner neuron. In Neurobiology of Mauthner cells: D.S. Faber and H. Korn (eds.). New York, Raven Press, pp. 212–244.

    Google Scholar 

  • Forehand, C.J. and Farel, P.B. (1982) Spinal cord development in anuran larvae: II ascending and descending pathways. J. Comp. Neurol. 209: 395–408.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, S.M. (1987) Dendritic development of chick retinal ganglion cells. Soc. Neurosci. Abst. 13: 1297.

    Google Scholar 

  • Goodman, C.S. and Spitzer, N.C. (1979) Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature 280: 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Guideiri, Y.B.A. (1966) The behavior and neuroanatomy of some developing teleost fishes. J. Zool. 149:215–241.

    Article  Google Scholar 

  • Hamburger, V. (1973) Anatomical and physiological basis of embryonic motility in buds and mammals. In: Studies on the development of behavior and the nervous system. G. Gotlieb, ed., New York, Academic Press, 1:51–76.

    Google Scholar 

  • Harris, J.E. (1962) Early embryonic movements. J. Obst. Gynaecol. Br. Commonw. 69:818–821.

    Article  CAS  Google Scholar 

  • Kanwal, J.S. and Finger, T.E. (1988) Spatial and temporal integration of taste and tactile information in the reticular formation of a teleost. Soc. Neurosci. Abstr. 14:691.

    Google Scholar 

  • Kimmel, C.B., Power, S.L. and Metcalfe, W.K. (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J. Comp. Neurol. 205: 112–127.

    Article  PubMed  CAS  Google Scholar 

  • Kuwada, J. (1986) Cell recognition by neuronal growth cones in a simple vertebrate embryo. Science 233:740–746.

    Article  PubMed  CAS  Google Scholar 

  • Lamborghini, J.E. (1980) Rohon-Beard cells and other large neurons in Xenopus embryos originate during gastrulation. J. Comp. Neurol. 189: 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Leghissa, S. (1942). Le basi anatomiche wella jevolazione del ‘compartments’ durante lo svilappo embrionale e post embryonale di Trota (Salmo fario, irideus e lacustris). Z. Ant. Etw Gesch. III, 601–675.

    Article  Google Scholar 

  • Martin, G.F., Beals, J.K., Culberson, J.L., Dom, R., Goode, G. and Humbertson, A.O. (1978) Observations on the development of brainstem-spinal systems in the North American opossum. J. Comp. Neurol. 181: 271–290.

    Article  PubMed  CAS  Google Scholar 

  • McClellan, A.D. and Grillner, S. (1984) Activation of “fictive swimming” by electrical microstimulation of brainstem locomotor region in an “in vitro” preparation of the lamprey central nervous system. Brain Res. 300:357–361.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, S.K., Ghosh, A. and Shatz, C.J. (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–989.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, B. (1986a) Development of reticulospinal neurons of the zebrafish. I. Time of origin. J. Comp. Neurol. 251: 160–171.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, B. (1986b) Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J. comp. Neurol. 251: 172–184.

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe, W.K., Mendelson, B. and Kimmel, C.B. (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J. Comp. Neurol. 251: 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Nordlander, R.H. (1984) Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus. J. Comp. Neurol. 228: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Nordlander, R.H., Baden, S.T. and Ryba, T.M.J. (1985) Development of early brainstem projections to the tail spinal cord of Xenopus. J. Comp. Neurol. 231: 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Okado, N. and Oppenheim, R.W. (1985) The onset and development of descending pathways to the spinal cord in the chick embryo. J. Comp. Neurol. 232: 143–161.

    Article  PubMed  CAS  Google Scholar 

  • Prasada Rao, P.D., Jadhao, A.G. and Sharma, S.C. (1987) Descending projection neurons to the spinal cord of the goldfish, (Carassius auratus). J. Comp. Neurol. 285: 96–108.

    Article  Google Scholar 

  • Rakic, P. (1986) Mechanism of ocular dominance segregation in the lateral geniculate nucleus: competitive elimination hypothesis. TINS 9: 11–15.

    Google Scholar 

  • Rhines, R. and Windle, W.F. (1941) The early development of the fasciculus longitudinalis medialis and associated secondary neurons in the rat, cat and man. J. Comp. Neurol. 75: 165–189.

    Article  Google Scholar 

  • Roberts, A. and Khan, J.A. (1982) Intracellular recordings from spinal neurons during swimming in paralysed amphibian embryos. Phil. Trans. R. Soc. Lond. B. 296: 213–228.

    Article  CAS  Google Scholar 

  • Ronan, M. (1989) Origin of descending spinal projection in petromyzontid and myxinoid Agnathans. J. comp. Neurol. 281:54–68.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S.C. and Unger, F. (1980) Histogenesis of the goldfish retina. J. Comp. Neurol. 191: 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S.M. (1985) Development of retinal projections to the cat’s lateral geniculate nucleus. TINS 8: 350–355.

    Google Scholar 

  • Sweet, W.J.A.J. and Timerick, S.J.B. (1981) Cell of origin of pathways descending to the spinal cord in chondichtyans, the shark, Scyliorhinus canicula and the ray Raja clavata. J. Comp. Neurol. 202:473–491.

    Article  Google Scholar 

  • Whiting, H.P. (1948) Nervous structure of the spinal cord of the young larval brook lamprey. Q.J. Miros. Sci. 89:359–383.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, S.C., Berthoud, V.M. (1992). Development of Descending Projection Neurons to the Spinal Cord of the Goldfish, Carassius auratus . In: Sharma, S.C., Goffinet, A.M. (eds) Development of the Central Nervous System in Vertebrates. NATO ASI Series, vol 234. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3018-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3018-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6315-6

  • Online ISBN: 978-1-4615-3018-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics