Skip to main content

Testicular Gene Amplification and Impaired BCHE Transcription Induced in Transgenic Mice by the Human BCHE Coding Sequence

  • Chapter
Multidisciplinary Approaches to Cholinesterase Functions

Abstract

Multiple findings implicate acetylcholine with sperm functioning 1,2 and acetyl-and butyrylcholinesterase activities (ACHE, BCHE) were observed in mammalian sperm cells and during oocyte development 1–3. In vivo amplification of the human BCHE gene was first found in a father and son exposed to cholinesterase inhibitors 4, but it remained unclear whether the amplified DNA was transmitted as such from father to son or whether the amplification phenomenon re-occurred in germ cells, particularly during male meiosis or sperm differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.V. Rama Sastry, V.E. Janson and A.K. Chaturvedi. Inhibition of human sperm motility by inhibitors of choline acetyltransferase. J. Pharmacol. Exp. Ther. 216: 378–384 (1981).

    Google Scholar 

  2. C.F. Ibanez, M. Pelto-Huikko, O. Soder, et al. Expression of choline acetyltransferase mRNA in spermatogenic cells results in an accumulation of the enzyme in the postacrosomal region of mature spermatozoa. Proc. Natl. Acad. Sci. USA. 88: 3676–3680 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. G. Malinger, H. Zakut and H. Soreq. Cholinoceptive properties of human primordial, pre-antral and mature oocytes: In-situ hyridization and biochemical evidence for expression of cholinesterase genes. J. Mol. Neuroscience 1: 77–84 (1989).

    CAS  Google Scholar 

  4. C.A. Prody, P. Dreyfus, R. Zamir, et al. De-novo amplification within a “silent” human cholinesterase gene in a family subjected to prolonged exposure to organophosphorous insecticides. Proc. Natl. Acad. Sci. USA. 86: 690–694 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. R.T. Schimke, Gene amplification in cultured animal cells. Cell 37:705–713 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. J.M. Bishop, The molecular genetics of cancer. Science 235:305–311(1987).

    Article  PubMed  CAS  Google Scholar 

  7. P.G. Pauw, M.D. Johnoson, P. Moore, et al. Stable gene amplification and overexpression of sodium and potassium activated ATPase in Hela cells. Mol. Cell. Biol. 6: 1164–1171 (1986).

    PubMed  CAS  Google Scholar 

  8. Y. Lapidot-lifson, C.A. Prody, D. Ginzberg, et al. Co-amplification of human acetylcholinesterase and butyrylcholin-esterase genes in blood cells: correlation with various leukemias and abnormal megakaryocytopoiesis. Proc. Natl. Sci. USA. 86:4715–4719 (1989).

    Article  CAS  Google Scholar 

  9. H. Zakut, G.Ehrlich, A.Ayalon, et al. Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas. J. Clin. Invest. 86: 900–908 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. H. Zakul, Y. Lapidot-Lifson, R. Beeri, et al. In-vivo gene amplification in non cancerous cells: cholinesterase genes and oncogenes amplify in thrombocytopenia associated with Lupus erythematosus. Mutation Research, in press. (1992).

    Google Scholar 

  11. M. Shani. Tissue specific expression of rat myosin light chain 3 gene in transgenic mice. Nature 314: 283–286 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. R. Beeri, A. Gnatt, Y. Lapidot-Lifson, et al. Gene amplification and its impaired transmission studied in transgenic mice canying human butyrylcholinesterase cDNA. submitted (1992).

    Google Scholar 

  13. E. Kim, S.H. Waters, L.E. Hake, et al. Identification and developmental expression of a smooth-muscle gamma-actin in postmeiotic male germ cells of mice. Mol. Cell Biol. 1875 1881 (1989).

    Google Scholar 

  14. Y. Lapidot-Lifson, D. Patinkin, C.A. Prody, et al. Cloning and antisense oligodeoxynucleotide inhibition of a human homolog of cdc2 required in hematopoiesis. Proc. Natl. Acad. Sci. USA, 89:579–583 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. C.A. Prody, D. Zevin-Sonkin, A. Gnatt, et al. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc. Natl. Acad. Sci. USA, 84:3555–3559 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. P.G. Layer, Cholinesterases during development of the avian nervous system. Cell. Mol. Neurobiol. 11:7–33. (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beeri, R. et al. (1992). Testicular Gene Amplification and Impaired BCHE Transcription Induced in Transgenic Mice by the Human BCHE Coding Sequence. In: Shafferman, A., Velan, B. (eds) Multidisciplinary Approaches to Cholinesterase Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3046-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3046-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6328-6

  • Online ISBN: 978-1-4615-3046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics