Skip to main content

Cellular binding proteins for fatty acids and retinoids: similar or specialized functions?

  • Chapter
Cellular Fatty Acid-Binding Proteins II

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 10))

  • 66 Accesses

Abstract

The cellular fatty acid-binding proteins (FABP) and cellular retinoid (retinol, retinoic acid)-binding proteins (CRtBP) are structurally and functionally-defined groups within an evolutionarily conserved gene family. CRtBP are expressed in both fully differentiated and developing tissues in a manner that supports a relationship to the action of retinoic acid in morphogenesis and cellular differentiation. The FABP are, by contrast, expressed only in fully differentiated tissues in a manner compatible with a major function in the metabolism of long-chain fatty acids (LCFA) for energy production or storage. The precise function(s) of FABP and CRtBP remain imperfectly understood, while subspecialization of function(s) within the two groups is suggested by the complex diversity in both of structurally distinct members that display striking tissue and temporal specificity of expression in addition to ligand specificity. Notwithstanding this considerable apparent functional diversity among the FABP and CRtBP, available evidence supports a dual set of generic functions for both protein groups in a) promoting cellular flux of poorly water-soluble ligands and their subsequent metabolic utilization or transformation, and b) sequestration of ligands in a manner that limits their association with alternative binding sites within the cell, of which members of the steroid hormone nuclear receptor superfamily (HNR) are a potentially important category. Theoretical as well as experimental models probing diffusional fluxes of LCFA in vitro and in living cells have provided support for a function for FABP in intracellular LCFA transport. Protein-bound ligand also appears to provide the substrate for metabolic transformation of retinoids bound to CRtBP, but convincing evidence is lacking for an analogous mechanism in the direct facilitation of fatty acid utilization by FABP. An emerging relationship between FABP and CRtBP function centers on their binding of, and induction by, ligands which activate or transform specific HNR — the retinoic acid receptors and the peroxisome proliferator activated receptor in the case of CRtBP and FABP, respectively. Evidence consistent with both a ‘promotive’ role (provision of ligands for HNR) and a ‘protective’ role (limiting availability of free ligand for HNR association) has been advanced for CRtBP. Available data supports a ‘protective’ function for cellular retinoic acid-binding proteins (CRABP) and liver FABP (L-FABP) and points to the existence of ligand-defined, lipid-binding-protein — HNR relationships in which CRABP serve to attenuate the induction of gene expression by retinoic acid, and in which L-FABP may modulate a cellular adaptive multigene response to increased LCFA flux or compromised LCFA utilization. Furthermore, the emerging role of LCFA in the regulation of gene expression combined with the complex interplay between heterologous HNR-ligand associations and gene cross-regulation implies an important potential interaction between FABP, CRtBP, and their respective ligands in gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A-FABP:

Adipocyte Fatty Acid-Binding Protein

CRABP:

Cellular Retinoic Acid-Binding Protein (s)

CRABP I:

Cellular Retinoic Acid-Binding Protein type I

CRABP II:

Cellular Retinoic Acid-Binding Protein type II

CRBP:

Cellular Retinol-Binding Protein(s)

CRBP:

Cellular Retinol-Binding Protein type I

CRBP II:

Cellular Retinol-Binding Protein type II

CRtBP:

Cellular Retinoid-Binding Proteins

FABP:

Fatty Acid-Binding Protein

H-FABP:

Heart Fatty Acid-Binding Protein

HNR:

steroid Hormone-type Nuclear Receptor

I-FABP:

Intestinal Fatty Acid-Binding Protein

LCFA:

Long-Chain Fatty Acids

L-FABP:

Liver Fatty Acid-Binding Protein

NBD-stearate:

12-(N-methyl)-N-(7-nitrobenzo-2-oxa-1,3,-diazol-4-yl)amino)-octadecanoic acid

PPAR:

Peroxisome Proliferator-Activated Receptor

RAR:

Retinoic Acid Receptor(s)

RARE:

Retinoic Acid Response Element

RXR:

Retinoic acid X Receptor(s)

RXRE:

Retinoic acid X Response Element

References

  1. Bass NM: The intracellular fatty acid-binding proteins: Aspects of structure, regulation and function. Internatl Rev Cytol 111: 143–184, 1988

    Article  CAS  Google Scholar 

  2. Kaikaus RM, Bass NM, Ockner RK: Functions of fatty acid-binding proteins. Expericntia 46: 617–630, 1990

    Article  CAS  Google Scholar 

  3. Bass NM, Kaikaus RM, Ockner RK: Physiology and molecular biology of hepatic cytosolic fatty acid-binding protein. In: N Tava-loni and PD Berk (eds) Hepatic Transport and Bile Secretion. Marcel Dekker Inc. New York, 1992 (In press)

    Google Scholar 

  4. Veerkamp JH, Pceters RA, Maatman RG: Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta 1081: 1–24, 1991

    Article  PubMed  CAS  Google Scholar 

  5. Blomhoff R, Green MH, Berg T, Norum KR: Transport and storage of vitamin A. Science 250: 399–404, 1990

    Article  PubMed  CAS  Google Scholar 

  6. Blomhoff R, Green MH, Norum KR: Vitamin A: physiological and biochemical processing. Ann Rev Nutr 12: 37–57, 1992

    Article  CAS  Google Scholar 

  7. Medzihradsky KF, Gibson BW, Kaur S, Yu Z, Medzihradsky D, Burlingame AL, Bass NM: The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family. Eur J Biochem 203: 327–339, 1992

    Article  Google Scholar 

  8. Biochemistry of lipids, lipoproteins and membranes. DE Vance and J Vance (eds) New Comprehensive Biochemistry Vol 20. Elsevier, Amsterdam, 1991

    Google Scholar 

  9. De Luca LM: Retinoids and their receptors in differentiation, em-bryogenesis and neoplasia. FASEB J 5: 2924–2933, 1991

    PubMed  Google Scholar 

  10. Buck J, Derguini F, Levi E, Nakanishi K, Hammerling U: Intracellular signalling by 14-hydroxy-4,14-retro-retinol. Science 254: 1654–1656, 1991

    Article  PubMed  CAS  Google Scholar 

  11. Lowe JB, Sacchettini JC, Laposata M, McQuillan JJ, Gordon JI: Expression of rat intestinal fatty acid-binding protein in Escher-ichi coli. J Biol Chem 262: 5931–5937, 1987

    PubMed  CAS  Google Scholar 

  12. Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI: Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in E. coli A comparative 13C NMR study. J Biol Chem 264: 2700–2710, 1989

    PubMed  CAS  Google Scholar 

  13. Peeters RA, Groen MAPM, de Moel MP, van Moerkerk HTB, Veerkamp JH: The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int J Biochem 21: 407–418, 1989

    Article  PubMed  CAS  Google Scholar 

  14. Wootan MG, Bass NM, Bernlohr DA, Storch J: Fatty acid binding sites of rodent adipocyte and heart fatty acid-binding proteins: characterization using fluorescent fatty acids. Biochemistry 29: 9305–9311, 1990

    Article  PubMed  CAS  Google Scholar 

  15. Khan SH, Sorof S: Preferential binding of growth inhibitory prostaglandins by the target protein of a carcinogen. Proc Natl Acad Sci USA 87: 9401–9405, 1990

    Article  PubMed  CAS  Google Scholar 

  16. Nemecz G, Hubbell T, Jefferson JR, Lowe JB, Schroeder F: Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins. Arch Biochem Biophys 286: 300–309, 1991

    Article  PubMed  CAS  Google Scholar 

  17. Nemecz G, Schroeder F: Selective binding of cholesterol by recombinant fatty acid-binding proteins. J Biol Chem 266: 17180–17186, 1991

    PubMed  CAS  Google Scholar 

  18. MacDonald PN, Ong DE: Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. J Biol Chem 262: 10550–10556, 1987

    PubMed  CAS  Google Scholar 

  19. Levin MS, Locke B, Yang NC, Li E, Gordon JI: Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli. J Biol Chem 263:17715–17723, 1988

    PubMed  CAS  Google Scholar 

  20. Ong DE, Crow A, Chytil F: Radioimmunochemical determination of cellular retinol-and cellular retinoic acid-binding proteins in cytosols of rat tissues. J Biol Chem 257: 13385–13389, 1982

    PubMed  CAS  Google Scholar 

  21. Eriksson U, Das K, Busch C, Nordlinder H, Rask L, Sundelin J, Saalstrom J, Peterson PA: Cellular retinol-binding protein. Quantitation and distribution. J Biol Chem 259: 13464–13470, 1984

    PubMed  CAS  Google Scholar 

  22. Blaner WS, Das K, Mertz JR, Das SR, Goodman DS: Effects of dietary retinole acid on cellular retinol-and retinoic acid-binding protein levels in various rat tissues. L Lipid Res 27: 1084–1088, 1986

    CAS  Google Scholar 

  23. Wei L-N, Mertz JR, Goodman DS, Nguyen-Huu MC: Cellular retinole acid-and retinol-binding proteins: complementary deoxyribonucleic acid cloning, chromosomal assignment, and tissue specific expression. Mol Endocrinol 1: 526–534, 1987

    Article  PubMed  CAS  Google Scholar 

  24. Blaner WS, Hendriks HFJ, Brouwer A, de Leeuw M, Knook DL, Goodman DS: Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res 26: 1241–1251, 1985

    PubMed  CAS  Google Scholar 

  25. Ong DE: A novel retinol-binding protein from rat. J Biol Chem 259:1476–1482, 1984

    PubMed  CAS  Google Scholar 

  26. Li E, Demmer LA, Sweetser DA, Ong DE, Gordon JI: Rat cellular retinol-binding protein II, Use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc Natl Acad Sci USA 83: 5779–5783,1986

    Article  PubMed  CAS  Google Scholar 

  27. Ong DE, MacDonald PN, Gubitosi AM: Esterification of retinol in rat liver. Possible participation by cellular retinol-binding protein and cellular retinol-binding protein II. J Biol Chem 263: 5789–5796, 1988

    PubMed  CAS  Google Scholar 

  28. Nishiwaki S, Kato M, Okuno M, Kanai M, Muto Y: Purification and partial characterization of a novel cellular retinol-binding protein, type three, from the piscine eyes. Biochim Biophys Acta 1037: 192–199, 1990

    Article  PubMed  CAS  Google Scholar 

  29. Bailey JS, Siu CH: Unique tissue distribution of two distinct cellular retinoic acid-binding proteins in neonatal and adult rat. Biochim Biophys Acta 1033: 267–272, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Giguere V, Lyn S, Yip P, Siu CH, Amin S: Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc Natl Acad Sci USA 87: 6233–6237, 1990

    Article  PubMed  CAS  Google Scholar 

  31. Ong DE, Page DL: Quantitation of cellular retinol-binding protein in human organs. Am J Clin Nutr 44: 425–430, 1986

    PubMed  CAS  Google Scholar 

  32. Bass NM, Manning JA: Tissue expression of three structurally different fatty acid-binding proteins from rat heart muscle, liver and intestine. Biochem Biophys Res Commun 137: 929–935, 1986

    Article  PubMed  CAS  Google Scholar 

  33. Yost RW, Harrison EH, Ross AC: Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. J Biol Chem 263:18693–18701, 1988

    PubMed  CAS  Google Scholar 

  34. Napoli JL, Posch KP, Fiorella PD, Boerman MH: Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed Pharmacother 45:131–143, 1991

    Article  PubMed  CAS  Google Scholar 

  35. Tipping E, Kctterer B: The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem J 195: 441–452, 1981

    PubMed  CAS  Google Scholar 

  36. Vork MM, Glatz JFC, Van Der Vusse GJ: On the mechanism of long chain fatty acid transport in cardiomyocyles as facilitated by cytoplasmic fatty acid-binding protein. J Theoret Biol 1992 (in press)

    Google Scholar 

  37. Herr FM, Ong DE: Differential interaction of lecithin-retinol acyltransferase with cellular retinol-binding proteins. Biochemistry 31: 6748–6755, 1992

    Article  PubMed  CAS  Google Scholar 

  38. Weisiger RA: Role of albumin binding in hepatic organic anion transport, i In: N Tavaloni and PD Berk (eds) Hepatic Transport and Bile Secretion. Marcel Dekker Inc., New York, 1992 (in press)

    Google Scholar 

  39. Bass L, Pond SM: The puzzle of rates of cellular uptake of protein bound ligands. In: A Peeile and A Rescigno (eds) Pharmacokinetics: Mathematical and Statistical Approaches to Metabolism and Distribution of Chemicals and Drugs. Plenum, London, 1988, pp 1425–1431

    Google Scholar 

  40. Weisiger RA, Pond SM, Bass L: Albumin enhances unidirectional fluxes of fatty acid across a lipid-water interface: theory and experiments. Am J Physiol 257: G904–G916, 1989

    PubMed  CAS  Google Scholar 

  41. Waggoner DW, Bernlohr DA: In situ labeling of the adipocyte lipid binding protein with 3-[125I]-Iodo-4-azido-N-hexadecyl-salicylamide. J Biol Chem 265: 11417–11420, 1990

    PubMed  CAS  Google Scholar 

  42. Waggoner DW, Manning JA, Bass NM, Bernlohr DA: In situ binding of fatty acids to the liver fatty acid-binding protein — analysis using 3-[125I]Iodo-4-azido-N-hexadecylsalicylamide. Biochem Biophys Res Commun 180: 407–415, 1991

    Article  PubMed  CAS  Google Scholar 

  43. Peeters RA, Veerkamp JH, Demel RA: Are fatty acid-binding proteins involved in fatty acid transfer? Biochim Biophys Acta 1002: 8–13, 1989

    Article  PubMed  CAS  Google Scholar 

  44. McCormack M, Brecher P: Effect of liver fatty acid-binding protein on fatty acid movement between liposomes and rat liver microsomes. Biochem J 244: 717–723, 1987

    PubMed  CAS  Google Scholar 

  45. Stewart JM, Driedzic WR, Berkelaar JA: Fatty-acid-binding protein facilitates the diffusion of oleate in a model cytosol system. Biochem J 275: 569–573, 1991

    PubMed  CAS  Google Scholar 

  46. Storch J, Bass NM: Transfer of fluorescent fatty acids from liver and heart fatty acid-binding proteins to model membranes. J Biol Chem 265: 7827–7831, 1990

    PubMed  CAS  Google Scholar 

  47. Jefferson JR, Powell DM, Rymaszewski Z, Kukowska-Latallo J, Lowe JB, Schroeder F: Altered membrane structure in transfect-ed mouse L-cell fibroblasts expressing rat liver fatty acid-binding protein. J Biol Chem 265:11062–11068, 1990

    PubMed  CAS  Google Scholar 

  48. Jefferson JR, Slotte JP, Nemecz G, Pastuszyn A, Scallen TJ, Schroeder F: Intracellular sterol distribution in transfected mouse L-cell fibroblasts expressing rat liver fatty acid-binding protein. J Biol Chem 266: 5486–5496, 1991

    PubMed  CAS  Google Scholar 

  49. Levin MS, He C: Vitamin A metabolism in Caco-2 cells transfected with retinol-binding proteins (Abstr). Gastroenterology 102: A563, 1992

    Google Scholar 

  50. Luxon BA, Weisiger RA: Cytoplasmic transport: a potentially rate-limiting step in the hepatic utilization of fatty acids (Abstr). Hepatology 14: 225A, 1991

    Google Scholar 

  51. Luxon BA, Weisiger RA: Sex differences in cytoplasmic transport of a fatty acid analog: evidence for a transport function for fatty acid-binding protein (FABP) (Abstr). Hepatology 16:144A, 1992

    Google Scholar 

  52. Bass NM: Fatty acid-binding protein expression in the liver: its regulation and relationship to the zonation of fatty acid metabolism. Mol Cell Biochem 98: 167–176, 1990

    Article  PubMed  CAS  Google Scholar 

  53. Knudsen J: Acyl-CoA-binding and transport, an alternative function for diazepam binding inhibitor (DBI), which is identical with acyl-CoA-binding protein. Neuropharmacol 30: 1405–1410, 1991

    Article  CAS  Google Scholar 

  54. Kakkad BP, Ong DE: Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J Biol Chem 263: 12916–12919, 1988

    PubMed  CAS  Google Scholar 

  55. Ong DE, Kakkad B, MacDonald PN: Acyl-CoA-independenl esterification of retinol bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J Biol Chem 262: 2729–2736, 1987

    PubMed  CAS  Google Scholar 

  56. Fiorella PD, Napoli JL: Expression of cellular retinoic acid-binding protein (CRABP) in Escherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism. J Biol Chem 266: 16572–16579, 1991

    PubMed  CAS  Google Scholar 

  57. Heirwegh KPM, Meuwissen JATP: Testing and characterizing enzymes and membrane-bound carrier proteins acting on amphi-pathic ligands in the presence of bilayer membrane material and soluble binding protein — application to the uptake of oleate into isolated cells. Biochem J 284: 353–351, 1992

    PubMed  CAS  Google Scholar 

  58. Liau G, Ong DE, Chytil F: Partial characterization of nuclear binding sites for retinol delivered by cellular retinol-binding protein. Arch Biochem Biophys 237: 354–360, 1985

    Article  PubMed  CAS  Google Scholar 

  59. Crow JA, Ong DE, Chytil F: Specificity of cellular retinol-binding protein in the transfer of retinol to nuclei and chromatin. Arch Biochem Biophys 254: 372–375, 1987

    Article  PubMed  CAS  Google Scholar 

  60. Takase S, Ong DE, Chytil F: Transfer of retinoic acid from its complex with cellular retinoic acid-binding proteins to the nucleus. Arch Biochem Biophys 247: 3288–3334, 1986

    Article  Google Scholar 

  61. Wang S-Y, Gudas LJ: Selection and characterization of F9 terato-carcinoma stem cell mutants with altered responses to retinoic acid. J Biol Chem 259: 5899–5906, 1984

    PubMed  CAS  Google Scholar 

  62. Vaessen MJ, Meijers JH, Bootsma D, Van Kessel AG: The cellular retinoic-acid-binding protein is expressed in tissues associated with retinoic-acid-induced malformations. Development 110: 371–378, 1990

    PubMed  CAS  Google Scholar 

  63. Maden M, Summerbell D, Maignan J, Darmon M, Shroot B: The respecification of limb pattern by new synthetic retinoids and their interaction with cellular retinoic acid-binding protein. Differentiation 47: 49–55, 1991

    Article  PubMed  CAS  Google Scholar 

  64. Vedeckis WV: Nuclear receptors, transcriptional regulation, and oncogenesis. Proc Soc Exp Biol Med 199:1–12, 1992

    PubMed  CAS  Google Scholar 

  65. Petkovich M: Regulation of gene expression by vitamin A: the role of nuclear retinoic acid receptors. Ann Rev Nutr 12:443–471, 1992

    Article  CAS  Google Scholar 

  66. Hertz R, Bar-Tana J: Induction of peroxisomal beta-oxidation genes by retinoic acid in cultured rat hepatocytes. Biochem J 281: 41–43, 1992

    PubMed  CAS  Google Scholar 

  67. Tugwood JD, Isseman I, Anderson RG, Bundell KR, McPheat WL, Green S: The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl-CoA oxidase gene. EMBO J 11: 433–439, 1992

    PubMed  CAS  Google Scholar 

  68. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM: Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin-D3 signalling. Nature 355: 446–449, 1992

    Article  PubMed  CAS  Google Scholar 

  69. Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Niko-dem VM, Ozato K: H-2RIIBP (RXRß) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 11: 1419–1435, 1992

    PubMed  CAS  Google Scholar 

  70. Thaller C, Eichcle G: Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 336:775–778, 1987

    Google Scholar 

  71. Maden M, Ong DE, Summerbcll D, Chytil F: Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335: 733–735, 1988

    Article  PubMed  CAS  Google Scholar 

  72. Dollé P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas L, Chambon P: Differential expression of the genes encoding the retinoic acid receptors α, β, γ and CRABP in the developing limbs of the mouse. Nature 342: 702–705, 1989

    Article  PubMed  Google Scholar 

  73. Dollé P, Ruberie E, Leroy P, Morriss-Kay G, Chambon P: Retinoic acid receptors and cellular relinoid-binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110: 1133–1151, 1990

    PubMed  Google Scholar 

  74. Boylan JF, Gudas LJ: Overexpression of the cellular retinoic acid-binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teralocarcinoma cells. J Cell Biol 112:965–979, 1991

    Article  PubMed  CAS  Google Scholar 

  75. Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P: A retinoic acid response element is present in the mouse cellular retinol-binding protein-I (mCRBPI) promoter. EMBO J 10: 2223–2230, 1991

    PubMed  CAS  Google Scholar 

  76. Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES, Evans RM: A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66: 555–561, 1991

    Article  PubMed  CAS  Google Scholar 

  77. Durand B, Saunders M, Leroy P, Leid M, Chambon P: All-irons and 9-cis-retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DRl and DR2 repeated motifs. Cell 71: 73–85. 1992

    Article  PubMed  CAS  Google Scholar 

  78. Macgregor TM, Copeland NGL, Jenkins NA, Giguere V: The murine gene for cellular retinoic acid-binding protein type-II — genomic organization, chromosomal localization, and post-tran-scriptional regulation by retinoic acid. J Biol Chem 267: 7777–7783, 1992

    PubMed  CAS  Google Scholar 

  79. Kaikaus RM, Lysenko N, Ockner RK, Bass NM: Long-chain monocarboxylic fatty acids induce peroxisomal β-oxidation and liver fatty acid-binding protein during inhibition of carnitine palmitoyltransferase I (Abstr). Gastroenterology 102: A828, 1992

    Google Scholar 

  80. Amri EZ, Bertrand B, Ailhaud G, Grimaldi P: Regulation of adipose cell differentiation. 1. Fatty acids are inducers of the aP2 gene expression. J Lipid Res 32:1449–1456, 1991

    PubMed  CAS  Google Scholar 

  81. Distel RJ, Robinson GS, Spiegelman BM: Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J Biol Chem 267: 5937–5941, 1992

    PubMed  CAS  Google Scholar 

  82. Brandes R, Kaikaus R, Ockner RK, Lysenko N, Bass NM: Induction of fatty acid-binding protein by peroxisome proliferators in primary hepatocyte cultures: relationship to the induction of peroxisomes. Biochim Biophys Acta 1034:53–61, 1990

    Article  PubMed  CAS  Google Scholar 

  83. Cannon JR, Eacho PI: Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver. Biochem J 280: 387–391, 1991

    PubMed  CAS  Google Scholar 

  84. Issemann I, Green S: Cloning of novel members of the steroid hormone receptor superfamily. J Steroid Biochem Mol Biol 40: 263–269, 1991

    Article  PubMed  CAS  Google Scholar 

  85. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W: Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68: 879–887, 1992

    Article  PubMed  CAS  Google Scholar 

  86. Gottlicher M, Widmark E, Li Q, Gustafsson JA: Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA 89:4653–4657, 1992

    Article  PubMed  CAS  Google Scholar 

  87. Nunn WD: A molecular view of fatty acid calabolism in Escherichia coli. Microbiol Rev 50: 179–192, 1986

    PubMed  CAS  Google Scholar 

  88. Sloots JA, Aitchison JD, Rachubinski RA: Glucose-responsive and oleic acid-responsive elements in the gene encoding the peroxisomal trifunctional enzyme of Candida-tropicalis. Gene 105: 129–134, 1991

    Article  PubMed  CAS  Google Scholar 

  89. Iritani N: Nutritional and hormonal regulation of lipogenic-en-zyme gene expression in rat liver. Eur J Biochem 205: 433–442. 1992

    Article  PubMed  CAS  Google Scholar 

  90. Ntambi JM: Dietary regulation of stearoyl-CoA desaturase-1 gene expression in mouse liver. J Biol Chem 267: 10925–10930, 1992

    PubMed  CAS  Google Scholar 

  91. Mazzachi BC, Kennedy JA, Wellby ML, Edwards AM: Effect of fatty acids on rat liver nuclear T(3)-receptor binding. Metabolism 41: 788–792, 1992

    Article  PubMed  CAS  Google Scholar 

  92. Power RF, Mani SK, Codina J, Conneely OM, O’Mallcy BW: Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254: 1636–1639, 1991

    Article  PubMed  CAS  Google Scholar 

  93. Diaz-Guerra MJM, Junco M, Bosca L: Oleic acid promotes changes in the subcellular distribution of protein kinase-C in isolated hepatocytes. J Biol Chem 266: 23568–23576. 1991

    PubMed  CAS  Google Scholar 

  94. Khan WA, Blobe GC, Hannun YA: Activation of protein kinase-C by oleic acid-determination and analysis of inhibition by detergent micelles and physiologic membranes — requirement for free oleate. J Biol Chem 267: 3605–3612, 1992

    PubMed  CAS  Google Scholar 

  95. Watanabe T, Okawa S, Itoga H, Imanaka T, Suga T: Involvement of calmodulin-and protein kinase C-related mechanism in an induction process of peroxisomal fatty acid oxidation-related enzymes by hypolipidemic peroxisome proliferators. Biochim Biophys Acta 1135: 84–90, 1992

    Article  PubMed  CAS  Google Scholar 

  96. DiRusso CC, Heimert TL, Metzger AK: Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia-Coli — Interaction with the FadB promoter is prevented by long chain fatty acyl coenzyme — As J Biol Chem 267: 8685–8691, 1992

    CAS  Google Scholar 

  97. Fuller PJ: The steroid receptor superfamily: mechanisms of diversity. FASEB J 5: 3092–3099, 1991

    PubMed  CAS  Google Scholar 

  98. Keler T, Barker CS, Sorof S: Specific growth stimulation by linoleic acid in hepatoma cell lines transfected with the target protein of a liver carcinogen. Proc Natl Acad Sci USA 89:4830–4834, 1992

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bass, N.M. (1993). Cellular binding proteins for fatty acids and retinoids: similar or specialized functions?. In: Glatz, J.F.C., van der Vusse, G.J. (eds) Cellular Fatty Acid-Binding Proteins II. Developments in Molecular and Cellular Biochemistry, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3096-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3096-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6353-8

  • Online ISBN: 978-1-4615-3096-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics