Skip to main content

Third Order Intersubband Kerr Effect in GaAs/AlGaAs Quantum Wells

  • Chapter
Intersubband Transitions in Quantum Wells

Part of the book series: NATO ASI Series ((NSSB,volume 288))

Abstract

Over the last decade, an extensive effort has been made to explore the physics of quantum well (QW) structures due to their potential applications for opto-electronic devices. The main catalysts of the rapid development in this field have been the progress of molecular beam epitaxy (MBE) technology which allows for the fabrication of ultra thin semiconductor epitaxial layers where the thickness and the relative concentration of the layers can be precisely controled. A typical QW structure consists of a GaAs epitaxial layer sandwiched between two wider band gap AlxGa1-xAs layers. In such a structure the carriers are confined to the thin GaAs layer which is typically of the order of 100 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y.Cho J. Vac. Sci. Technol. B 1 376 (1986);

    Article  Google Scholar 

  2. M. A. Kinch and A. Yariv Appl. Phys. Lea. 55 2093 (1989).

    Article  ADS  Google Scholar 

  3. B. F. Levine, C. G. Bethea, G. Hasnain, J. Walker, and R. J. Malik Appl. Phys. Lett.53, 2196 (1988).

    Google Scholar 

  4. C. G. Bethea, B. F. Levine, V. O. Shen, R. R. Abbott, and S. J. Hseih IEEE Trans. Electron Devices 38 1118 (1991).

    Article  ADS  Google Scholar 

  5. L. C. West, and S. J. Eglash Appl. Phys. Lett. 46 1156 (1985).

    Article  ADS  Google Scholar 

  6. A. Harwit and J. S. Harris Jr. Appl. Phys. Lett. 50 685 (1987).

    Article  ADS  Google Scholar 

  7. M. J. Kane, M. T. Emeny, N. Apsley, C. R. Whitehouse, and P. Lee Semicond. Sci. Technol. 3 722 (1988).

    Article  ADS  Google Scholar 

  8. D. Ahn and S. L. Chuang IEEE J. Quantum Electron. 23 2196 (1987).

    Article  ADS  Google Scholar 

  9. M. M. Fejer, S. J. Yoo, R. L. Byer, A. Harwit, and J. S. Harris Phys. Rev. Lett. 62 1041 (1989).

    Article  ADS  Google Scholar 

  10. E. Rosencher, P. Bois, J. Nagle, and S. Delaitre Electron. Lett. 25 1063 (1989).

    Article  Google Scholar 

  11. A. Sa’ar, I. Gravé, N. Kuze, and A. Yariv, Proceeding of the topical meeting NLO’90 Nonlinear Optics: Materials, Phenomena & devices, Hawaii 1990, paper #TP13.

    Google Scholar 

  12. P. Boucaud, F. H. Julien, D. D. Yang, J-M. Lourtioz, E. Rosencher, P. Bois, and J. Nagle Appl. Phys. Lett. 57 215 (1990).

    Article  ADS  Google Scholar 

  13. E. Rosencher, P. Bois, J. Nagle, E. Costard, and S. Delaitre Appl. Phys. Lett. 55 1597 (1989).

    Article  ADS  Google Scholar 

  14. A. Sa’ar, I. Grave, N. Kuze, and A. Yariv submitted for publication, July 1991.

    Google Scholar 

  15. A. Yariv Quantum Electronics 3rd ed., John Wiley, New York 1989.

    Google Scholar 

  16. Y. R. Shen The Principles of Nonlinear Optics John Wiley, New York 1984.

    Google Scholar 

  17. N. Bloembergen, H. Lotem and R. T. Lynch Indian J. of Appl. Phys. 16 151 (1978).

    Google Scholar 

  18. A. Seilmeir, H. J. Hubner, G. Abstreiter, G. Weimann, and W. Schlapp Phys. Rev. Lett.. 59 1345 (1987).

    Article  ADS  Google Scholar 

  19. H. T. Grahn, H. Schneider, W. W. Ruhle, K. von Klitzing, and K. Ploog Phys. Rev. Lett.. 64 2426 (1990).

    Article  ADS  Google Scholar 

  20. B. F. Levine, R. J. Malik, J. Walker, K. K. Choi, C. G. Bethea, D. A. Kleinman, and J. M. Vandenberg Appl. Phys. Lett. 50 273 (1987).

    Article  ADS  Google Scholar 

  21. H. Asai and Y. Kawamura Appl. Phys. Lett. 56 1149 (1990).

    Article  ADS  Google Scholar 

  22. We have also considered the screening due to tunneling of the wavefunction into the barriers where its experiences a stronger electric field. This effect was found to be much smaller then the screening due to the space charge field.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sa’ar, A., Kuze, N., Feng, J., Grave, I., Yariv, A. (1992). Third Order Intersubband Kerr Effect in GaAs/AlGaAs Quantum Wells. In: Rosencher, E., Vinter, B., Levine, B. (eds) Intersubband Transitions in Quantum Wells. NATO ASI Series, vol 288. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3346-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3346-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6475-7

  • Online ISBN: 978-1-4615-3346-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics