Skip to main content

B-Lymphocyte Lineage-Committed, IL-7 and Stroma Cell- Reactive Progenitors and Precursors, and Their Differentiation to B Cells

  • Chapter
Mechanisms of Lymphocyte Activation and Immune Regulation IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 323))

Abstract

Long term lymphoid cell cultures from fetal liver and bone marrow1 have been used to study T- and B-lymphocyte development ‘in vitro’ and by repopulation experiments of suitable hosts ‘in vitro’2. Cell contacts between the progenitors of lymphocytes and stromal cells, as well as cytokines produced upon these contacts3 were found to be required for lymphopoiesis, specifically of the B-lymphocyte lineage4-6. Multiple contacts between stromal cells and progenitors have since been identified in this adhesion7-11. These early forms of progenitor and precursor cultures set the stage and raised the hope to dissect the hierarchy of hemopoietic-lymphopoietic differentiation to clone the differently committed cells, and to determine their capacity to proliferate and to differentiate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.A. Denis and O.N. Witte, Long-term lymphoid cultures in the study of B cell differentiation, in: “Immunoglobulin Genes”, T. Honjo, F.W. Alt and T.H. Rabbits, eds., Academic Press, New York (1989).

    Google Scholar 

  2. R.A. Phillips, Development and regulation of the lymphocyte lineages: an interpretative overview, Progr. Immunol. 7:305 (1989).

    Google Scholar 

  3. A.E. Namen, S. Lupton, K. Hjerrild, I. Wagnall, D.Y. Mochuzuki, A. Schmierer, B. Mosley, C. March, D. Urdal, S. Gillis, D. Cosman and R.G. Goodwin, Stimulation of B cell progenitors by cloned murine interleukin 7, Nature 333:571 (1988).

    Google Scholar 

  4. P.W. Kincade, G. Lee, C.E. Pietrangeli, S.i. Hayashi and I.M. Gimble, Cells and molecules that regulate B-lymphopoiesis in bone marrow, Ann. Rev. Immunol. 7:111 (1988).

    Google Scholar 

  5. K. Dorshkind, Regulation of hemopoiesis by bone marrow stromal cells and their products, Ann. Rev. Immunol. 8:111 (1990).

    Google Scholar 

  6. A. Rolink and F. Melchers, Molecular and cellular origins of B lymphocyte diversity, Cell 66:1081 (1991).

    Google Scholar 

  7. R.D. Sanderson, P. Lalor and M. Bernfield, B lymphocytes express and lose syndecan at specific stages of differentiation, Cell Reg. 1:27 (1989).

    Google Scholar 

  8. P.S. Thomas, C.E. Pietangeli, S.I. Hayashi, M. Schachner, C. Goridis, M. Low and P.W. Kincade, Demonstration of neural cell adhesion molecules on stromal cells which support lymphopoiesis, Leukemia 2:171 (1988)

    Google Scholar 

  9. P. Bernardi, V.P. Patel and H.F. Lodish, Lymphoid precursor cells adhere to two different sites on fibronectin. J. Cell. Biol. 105:489 (1988).

    Google Scholar 

  10. K. Miyake, C.B. Underhill, J. Lesley and P.W. Kincade, Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J. Exp. Med. 172:69 (1990).

    Google Scholar 

  11. K. Miyake, I.L. Weissman, J.S. Greenberger and P.W. Kincade, Evidence for a role of the integrin VLA-4 in lymphohemapoiesis. J. Exp. Med. 173:599 (1991).

    Google Scholar 

  12. L.S. Collins and K. Dorshkind, A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J. Immunol. 138:1082 (1987).

    Google Scholar 

  13. C.A. Whitlock, G.F. Tidmarsh, C. Müllier-Sieburg and I.L. Weissman, Bone marrow stomal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell 48:1009 (1987).

    Google Scholar 

  14. S.I. Nishikawa, M. Ogawa, S. Nishikawa, T. Kumisada and H. Kodama, B lymphopoiesis on stromal cell clones: stromal cell clones acting on different stages of B cell differentiation. Eur. J. Immunol. 18:1767 (1988).

    Google Scholar 

  15. T. Era, M. Ogawa, S.I. Nishikawa, M. Okamoto, T. Honjo, K. Akagi, J.I. Migazaki and K.I. Yamamura, Differention of growth signal requirement of B lymphocyte precursor is directed by expression of immunoglobulin. EMBO J. 10:337 (1991).

    Google Scholar 

  16. S.I. Hayashi, T. Kunisada, M. Ogawa, T. Sudo, H. Kodama, T. Suda, T. Nishikawa and S.I. Nishikawa, Stepwise progression of B lineage differentiation supported by interleukin 7 and other stromal cell molecules. J. Exp. Med. 171:1683 (1990).

    Google Scholar 

  17. A. Rolink, A. Kudo, H. Karasuyama, Y. Kikuchi and F. Melchers, Long-term proliferating early pre-B cell lines and clones with the potential to develop to surface Ig-positive, mitogen-reactive B cells in vitro and in vivo. EMBO J. 10:327 (1991).

    Google Scholar 

  18. P. Besmer, J.E. Murphy, J.P.C. George, F. Qui, P.J. Bergold, L. Lederman and H.W. Snyder Jr., A new acute transforming feine retrovirus and relationship of its oncogene v-kit with the protein kinase family. Nature 320:415 (1986).

    Google Scholar 

  19. B. Chabot, D.A. Stephenson, V.M. Chapman, P. Besmer and A. Bernstein, The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88 (1988).

    Google Scholar 

  20. E.N. Geissler, M.A. Ryan and D.E. Housman, The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55:185 (1988).

    Google Scholar 

  21. J.C. Tau, K. Nocka, P. Ray, P. Traktman and P. Besmer, The dominant W42 spotting phenotype results from a missense mutation in the c-kit receptor kinase. Science 247:209 (1990).

    Google Scholar 

  22. K. Nocka, J. Tau, E. Chiu, T.Y. Chu, P. Ray, P. Traktman and P. Besmer, Molecular basis of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, WV, W41 and W. EMBO J. 9:1805 (1990).

    Google Scholar 

  23. D. Bennett, Developmental analysis of a mutation with pleiotropic effects in the mouse. J. Morphol 98:199 (1956).

    Google Scholar 

  24. O.W. Witte, Steel locus defines new multipotent growth factors. Cell 63:5–6 (1990).

    Google Scholar 

  25. M. Ogawa, Y. Matsuzaki, S. Nishikawa, S.I. Hayashi, T. Kunisada, T. Sudo, T. Kina, H. Nakauchi and S.I. Nishikawa, Expression and function of ckit in hemopoietic progenitor cells. J. Exp. Med. 174:63 (1991).

    Google Scholar 

  26. A. Rolink, M. Streb, S.I. Nishikawa and F. Melchers, The c-kit-encoded tryrosine kinase regulates the proliferation of early pre-B cells, Eur. J. Immunol. 21:2609 (1991).

    Google Scholar 

  27. Y. Shinkai, G. Rathbun, K.-P. Lam, E.M. Oltz, V. Stewart, M. Mendelsohn, J. Charon, M. Datta, F. Young, A.M. Stall and F.W. Alt, RAG-2 deficient mice lack mature lymphocytes due to inability to initiate VDJ rearrangement. Cell in press.

    Google Scholar 

  28. A. Rolink, M. Streb and F. Melchers, The κλ ratio in surface immunoglobulin molecules on B lymphocytes differentiating from DHJH-rearranged murine pre-B cell clones in vitro, Eur. J. Immunol. 21:2895 (1991).

    Google Scholar 

  29. K.L. Maguire and E.S. Vietta, κ/λ shifts do not occur during maturation of murine B cells. J. Immunol. 127:1670 (1981).

    Google Scholar 

  30. S. Kessler, K.J. Kim and I. Scher, Surface membrane κ and λ light chain expression on spleen cells of neonatal and maturing normal and immune-defective CBAIN mice: The κ:λ. ratio is constant. J. Immunol. 127:1674.(1981)

    Google Scholar 

  31. T. Takemori and K. Rajewsky, Lambda chain expression at different stages of ontogeny in C57BL/6, BALB/c and SJL mice. Eur. J. Immunol. 11:618 (1981).

    Google Scholar 

  32. J.M. LeJeune, D.E. Briles, A.R. Lawton and J.F. Kearney, Estimate of the light chain repertoire size of fetal and adult BALB/cJ and CBA/J mice. J. Immunol. 129:673.(1982)

    Google Scholar 

  33. H. Sauter and C.J. Paige, Detection of normal B-cell precursors that give rise to colonies producing both κ and λ light immunoglobulin chains. Proc. Natl. Acad. Sci. USA 84:4898 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melchers, F., Haasner, D., Streb, M., Rolink, A. (1992). B-Lymphocyte Lineage-Committed, IL-7 and Stroma Cell- Reactive Progenitors and Precursors, and Their Differentiation to B Cells. In: Gupta, S., Waldmann, T.A. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation IV. Advances in Experimental Medicine and Biology, vol 323. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3396-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3396-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6500-6

  • Online ISBN: 978-1-4615-3396-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics