Skip to main content

In Vivo NADH Fluorescence

  • Chapter
Oxygen Transport to Tissue XIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 317))

Abstract

Reduced nicotinamide adenine dinucleotide (NADH) offers one of the main means to transfer energy from the tricarboxylic acid cycle to the respiratory chain in the mitochondria. NADH is situated at the high-energy side of the respiratory chain and during tissue hypoxia accumulates in concentration because less NADH is oxidized to NAD+. The optical properties of NADH and NAD+ clearly differ. The absorption spectrum of a NADH solution shows two maxima at the ultraviolet end of the light spectrum, one at 250 nm and the other at about 340 nm. NAD+, on the other hand has an absorption maximum at 250 nm and almost does not absorb light above 300 nm [Renault et al. 1982]. Upon excitation with UV-light NADH, unlike NAD+, fluoresces in the blue (broad-band emission centered around 460 nm). Chance and co-workers pioneered this fluorescence property of NADH as an indicator of the intramitochondrial redox state and, in the presence of sufficient substrate and phosphates, as an indicator of cellular oxygen requirements [Chance et al. 1962, 1976]. In order to gain insight into the metabolic properties of biological material from various sources, NADH fluorescence measurements have now been applied to single cells, tissue-slices and intact organs (both saline-perfused and in vivo). As absorption and scatter of light by chromophores and corpuscles in tissue affect measurement of NADH fluorescence, several compensation methods have been introduced. Especially when studying NADH fluorescence in vivo, the effect of blood has to be taken into consideration for correct interpretation of the fluorescence measurements. The purpose of this brief review is to summarize the work that has been done on the application of NADH fluorescence measurements to the study of the metabolic state of tissue in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashruf, J., Avontuur, J.A.M., Van Bavel, E., Ince, C., and Bruining, H.A. (1990), Local ischemia created by microspheres in the rat heart induces heterogeneous epicardial NADH fluorescence. Pflügers Arch. 416, S2.

    Google Scholar 

  • Avi-Dor, Y., Olson, J.M., Doherty, M.D., and Kaplan, N.O. (1962), Fluorescence of pyridine nucleotides in mitochondria. J. Biol. Chem. 237, 2377–2383.

    CAS  Google Scholar 

  • Avontuur, J.A.M., Ashruf, J., Yzermans, J.N.M., Scheringa, M., Ince, C., and Bruining, H.A. (1990), NADH videofluorimetry reveals early gut ischemia caused by tumor necrosis factor. Pflügers Arch. 418, R143.

    Google Scholar 

  • Balaban, R.S., and Mandel, L.J. (1988), Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am. J. Physiol. 254, F407–F416.

    PubMed  CAS  Google Scholar 

  • Balaban, R.S. (1990), Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. 258, C377–C389.

    PubMed  CAS  Google Scholar 

  • Barlow, C., and Chance, B. (1976), Ischemic areas in perfused rat hearts: measured by NADH fluorescence photography. Science Wash. DC 193, 909–910.

    Article  CAS  Google Scholar 

  • Barlow, C.H., Harken, A.H., and Chance, B. (1977), Evaluation of cardiac ischemia by NADH fluorescence photography. Ann. Surg. 186, 737–740.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., and Thorell, B. (1959), Localization and kinetics of reduced pyridine nucleotides in living cells by microfluorimetry. J. Biol. Chem. 234, 3044–3050.

    PubMed  CAS  Google Scholar 

  • Chance, B., Cohen, P., Jöbsis, F., and Schoener, B. (1962), Intracellular oxidation-reduction states in vivo. The microfluorometry of pyridine nucleotide gives a continuous measurement of the oxidation state. Science 137, 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Williamson, J.R., Jamieson, D., and Schoener, B. (1965), Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart. Biochem. Zeitschrift 341, 357–377.

    Google Scholar 

  • Chance, B., Salkovitz, I.A. and Kovach, A.G.B. (1972), Kinetics of mitochondrial flavoprotein and pyridine nucleotide in perfused heart. Am. J. Physiol. 213 (1), 207–218.

    Google Scholar 

  • Chance, B., Legallais, V., Sorge, J., and Graham, N. (1975), A versatile time-sharing multichannel spectrophotometer, reflectometer, and fluorometer. Anal. Biochem. 66, 498–514.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B. (1976), Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Supp. 1 Circ. Res. 38, 131–138.

    Google Scholar 

  • Chance, B., Barlow, C., Nakase, Y., Takeda, H. Mayevsky, A., Fischetti, R., Graham, N., and Sorge, J. (1978), Heterogeneity of oxygen delivery in normoxic and anoxic states: a fluorimeter study. Am. J. Physiol. 235 (6), H809–H820.

    PubMed  CAS  Google Scholar 

  • Dora, E., Gyulai, L., and Kovách, A.G.B. (1984), Determinants of brain activation-induced cortical NAD/NADH responses in vivo. Brain Research 299, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Dora, E., Tanaka, K., Greenberg, J.H., Gonatas, N.H., and Reivich, M. (1986), Kinetics of microcirculation, NAD/NADH, and electrocorticographic changes in cat brain cortex during ischemia and recirculation. Ann. Neurol. 19, 536–544.

    Article  PubMed  CAS  Google Scholar 

  • Duboc, D., Renault, G., Polianski, J., Muffat-Joly, M., Toussaint, M., Guerin, F., Pocidalo, J., and Fardeau, M. (1986a), NADH measured by laser fluorimetry in skeletal muscle in McArdle’s disease. New Eng. J. Med. 316, 1664–1665.

    Google Scholar 

  • Duboc, D., Toussaint, M., Donsez, D., Weber, S., Guerin, F., Degeorges, M., Renault, G., Polianski, J., and Pocidalo, J.-J. (1986b), Detection of regional myocardial ischemia by NADH laser fluorimetry during human left heart catheterization. The Lancet, Aug. 30, 522.

    Article  Google Scholar 

  • Duboc, D., Abastado, P., Muffat-Joly, M., Perrier, P., Toussaint, M., Marsac, C., Francois, D., Lavergne, T., Pocidalo, J.-J., Guerin, F., and Carpentier, A. (1990), Evidence of mitochondrial impairment during cardiac allograft rejection. Transplantation 50, 751–755.

    PubMed  CAS  Google Scholar 

  • Eke, A., Hutiray, G., and Kovách, A.G.B. (1979), Induced hemodilution detected by reflectometry for measuring microregional blood flow and blood volume in cat brain cortex. Am. J. Physiol. 236 (5), H759–H768.

    PubMed  CAS  Google Scholar 

  • Eng, J., Lynch, R.M., and Balaban, R.S. (1989), Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys. J. 55, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Ereciñska, M., and Wilson, D.F. (1982), Regulation of cellular energy metabolism. J. Membrane Biol. 70, 1–14.

    Article  Google Scholar 

  • Estabrook, R.W. (1962), Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal. Biochem. 4, 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Fralix, T.A., Heineman, F.W., and Balaban, R.S. (1990), Effects of tissue absorbance on NAD(P)H and Indo-1 fluorescence from perfused rabbit hearts. FEBS Lett. 262, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Galeotti, T., van Rossum, G.D.V., Mayer, D.H., and Chance, B. (1970), On the fluorescence of NAD(P)H in whole cell preparations of tumours and normal tissues. Eur. J. Biochem. 17, 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Glock, G.E., and McLean, P. (1955), Levels of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues. Biochem. J. 61, 388–390.

    PubMed  CAS  Google Scholar 

  • Gosalvez, M., Thurman, R.G., Chance, B., and Reinhold, H.S. (1972), Indication of hypoxic areas in tumors from in vivo NADH fluorescence. Eur. J. Cancer 8, 267–269.

    Article  PubMed  CAS  Google Scholar 

  • Harbig, K., Chance, B., Kovách, A.G.B. and Reivich, M. (1976), In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J. Appl. Physiol. 41, 480–488.

    PubMed  CAS  Google Scholar 

  • Hassinen, I.E., and Hiltunen, K. (1975), Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and adenylate system. Biochim. Biophys. Acta 408, 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Hassinen, I. and Jämsä, T. (1982), A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and nicotinamide nucleotides in intact tissues. Anal. Biochem. 120, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Ince, C., Wieringa, P.A., van der Laarse, A., Nederlof, P.M., Tanke, H.J., van Marie, J., van Weeren-Kramer, J., and Spaan, J.A.E. (1988), A microscopic video-enhanced fluorescence technique for measurement of [NADH] in the myocardium. Pflügers Arch. 412, 72.

    Google Scholar 

  • Ince, C., Beekman, R.E., and Verschragen, G. (1990a), A micro-perfusion chamber for single-cell fluorescence measurements. J. Immunological Methods, 128, 227–234.

    Article  CAS  Google Scholar 

  • Ince, C., Vink, H., Wieringa, P.A., Giezeman, M., and Spaan, J.A.E. (1990b), Heterogeneous NADH fluorescence during postanoxic reactive hyperemia in saline perfused rat heart. In: Oxygen Transport to Tissue (Piiper, J., Goldstick, T.K., and Meyer, M., eds.), Adv. Exp. Med. Biol. 277, pp. 477–482, Plenum Press, New York.

    Google Scholar 

  • Ince, C., and Bruining, H.A. (1991), Optical spectroscopy for identification of tissue hypoxia. In: Update in intensive care and emergency medicine: Update 1991. ( Vincent, J.L., ed.), pp. 161–171, Springer-Verlag, New York.

    Google Scholar 

  • Ince C., Ashruf, J.F., Pierik, E.G.J.M., Coremans, J.M.C.C., and Bruining, H.A. (1992), NADH fluorescence and Pd-porphyrin phosphorescence in the rat heart in vivo. Adv. Exp. Med. Biol., this volume.

    Google Scholar 

  • Ji, S., Chance, B., Stuart, B.H., and Nathan, R. (1977), Two-dimensional analysis of the redox state of the rat cerebral cortex in vivo by NADH fluorescence photography. Brain Res. 119, 357–373.

    Article  PubMed  CAS  Google Scholar 

  • Ji, S., Chance, B., Nishiki, K., Smith, T., and Rich, T. (1979), Micro-light guides: a new method for measuring tissue fluorescence and reflectance. Am. J. Physiol. 236 (3), C144–C156.

    PubMed  CAS  Google Scholar 

  • Jöbsis, F.F., and Duffield, J.C. (1967), Oxidative and glycolytic recovery metabolism in muscle. J. Gen. Physiol. 50, 1009–1047.

    Article  PubMed  Google Scholar 

  • Jöbsis, F.F., O’Connor, M., Vitale, A. and Vreman, H. (1971), Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J. Neurophysiol. 34, 735–749.

    PubMed  Google Scholar 

  • Katz, L.A., Koretsky, A.P., and Balaban, R.S. (1987), Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study. FEBS Lett. 221, 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Kissin, I., Aultmann, D.F., Smith, L.R. (1983), Effects of volatile anesthetics on myocardial oxidation-reduction status assessed by NADH fluorometry. Anesthesiology 59, 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, M., Slenczka, W., and Ritt, E. (1959), Vergleichende Biochemie der Pyridinnucleotid-systeme in Mitochondrien verschiedener Organe. Biochem. Z. 332, 47–66.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S., Nishiki, K., Kaede, K. and Ogata, E. (1971a), Optical consequences of blood substitution on tissue oxidation-reduction state fluorometry. J. Appl. Physiol. 31 (1), 93–96.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S., Kaede, K., Nishiki, K., and Ogata, E. (1971b), Microfluorimetry of oxidation-reduction state of the rat kidney in situ. J. Appl. Physiol. 31 (5), 693–696.

    PubMed  CAS  Google Scholar 

  • Koretsky, A.P., and Balaban, R.S. (1987a), Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study. Biochim. Biophys. Acta 893, 398–408.

    Article  PubMed  CAS  Google Scholar 

  • Koretsky, A.P., Katz, L.A. and Balaban, R.S. (1987b), Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard. Am. J. Physiol. 253, H856–H862.

    PubMed  CAS  Google Scholar 

  • Kramer, R.S., and Pearlstein, R.D. (1979), Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact. Science 205, 693–696.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky, A., and Chance, B. (1973), A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. In: Oxygen Transport to Tissue (Bicher, H.J., and Bruley, D.F., eds.), Adv. Exp. Med. Biol., 37A, pp. 239–244, Plenum Press, New York.

    Google Scholar 

  • Mayevsky, A., and Chance, B. (1974), Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res. 65, 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky, A., and Chance, B. (1975), Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res. 98, 149–165.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky, A., and Chance, B. (1982), Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217, 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky, A. (1984), Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. Rev. 7, 49–68.

    Article  CAS  Google Scholar 

  • Mills, S.A., Jöbsis, F.F., and Seaber, A.V. (1977), A fluorometric study of oxidative metabolism in the in vivo canine heart during acute ischemia and hypoxia. Ann. Surg. 186, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Nuutinen, E.M. (1984), Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res. Cardiol. 79, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, M.J., Herman, C.J., Rosenthal, M., and Jöbsis, F.F. (1972), Intracellular redox changes preceding the onset of epileptiform activity in intact cat hippocampus. J. Neurophysiol. 35, 471–483.

    PubMed  Google Scholar 

  • Paddle, B.M. (1988), A scanning fluorometer for imaging ischaemic areas in traumatized muscle. Suppl. 1 J. Trauma 28, S189–S193.

    Article  PubMed  CAS  Google Scholar 

  • Pappajohn, D.J., Penneys, R., and Chance, B. (1972), NADH spectrofluorometry of rat skin. J. Appl. Physiol. 33, 684–687.

    PubMed  CAS  Google Scholar 

  • Pierik, E.G.J.M., Ince, C., Avontuur, J.A.M., Ashruf, J., and Bruining, H.A. (1991), The application of NADH fluorescence to identify noninvasively tissue hypoxia in vivo. European Surgical Research 23, 12–13.

    Google Scholar 

  • Ploem, J.S. (1970), In: Standardization in immunofluorescence (E.J. Holborow ed.), pp. 137–153, Blackwell, Oxford.

    Google Scholar 

  • Renault, G., Raynal, E., Sinet, M., Berthier, J.P., Godard, B., and Cornillault, J. (1982), A laser fluorimeter for direct cardiac metabolism investigation. Optics and Laser Techn. 14, 143–148.

    Article  CAS  Google Scholar 

  • Renault, G., Raynal, E., and Cornillault, J. (1983), Cancelling of Fresnel reflections in in situ, double beam laser, fluorimetry using a single optical fibre. J. Biomed. Eng. 5, 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Renault, G., Raynal, E., Sinet, M., Muffat-Joly, M., Berthier, J.-P., Cornillault, J., Godard, B., and Pocidalo, J.-J. (1984), In situ double-beam NADH laser fluorimetry: a choice of a reference wavelength. Am. J. Physiol. 246, H491–H499.

    PubMed  CAS  Google Scholar 

  • Renault, G., Sinet, M., Muffat-Joly, M., Cornillault, J., and Pocidalo, J.J. (1985), In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia. Lasers in Surgery and Medicine 5, 111–122.

    Article  PubMed  CAS  Google Scholar 

  • Renault, G., Muffat-Joly, M., Polianski, J., Hardy, R.I., Boutineau, J.-L., Duvent, J.-L., and Pocidalo, J.-J. (1987), NADH in situ laser fluorimetry: effect of pentobarbital on continuously monitored myocardial redox state. Lasers in Surgery and Medicine 7, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Schuette, W.H., and Simon, A.L. (1968), A new device for recording cardiac motion. Med. Res. Eng. 7, 25–27.

    PubMed  CAS  Google Scholar 

  • Schuette, W.H., Whitehouse, W.C., Lewis, D.V., O’Connor, M., and Van Buren, J.M. (1974), A television fluorometer for monitoring oxidative metabolism in intact tissue. Med. Instrum. 8, 331–333.

    PubMed  CAS  Google Scholar 

  • Steenbergen, C., DeLeeuw, G., Barlow, C., Chance, B., and Williamson, J.R. (1977), Heterogeneity of the hypoxic state in perfused rat heart. Circ. Res. 41, 606–615.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, B.H., and Chance, B. (1974), NADH brain surface scanning and 3-D computer display. Brain Res. 76, 473–479.

    Article  PubMed  CAS  Google Scholar 

  • Sundt, T.M., and Anderson, R.E. (1975), Reduced nicotinamide adenine dinucleotide fluorescence and cortical blood flow in ischemic and nonischemic squirrel monkey cortex. 1. Animal preparation, instrumentation, and validity of model. Stroke 6, 270–278.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, M., Hazeki, O., Nioka, S., and Chance, B. (1989), In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies. Ann. Rev. Physiol. 51, 813–834.

    Article  CAS  Google Scholar 

  • Toussaint, M., Duboc, D., Renault, G., Polianski, J., Schved, M., Donsez, D., Weber, S., Dessault, O., Pocidalo, J.J., Guérin, F., and Degeorges, M. (1987), Exploration du métabolisme myocardique par fluorimétrie laser du NADH au cours du cathétérisme cardiaque. Arch. Mal. Couer 9, 1341–1349.

    Google Scholar 

  • Tsien, R.Y. (1989), Fluorescence indicators of ion concentrations. Meth. Cell. Biol. 30, 127–153.

    Article  CAS  Google Scholar 

  • Tsubota, K., Krauss, J.M., Kenyon, K.R., Laing, R.A., Miglior, S., and Cheng, H.-M. (1989), Lens redox fluorometry: pyridine nucleotide fluorescence and analysis of diabetic lens. Exp. Eye Res. 49, 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu, D., Greenberg, J.H., Reivich, M., and Karp, A. (1989), Cytosolic free calcium and NAD/NADH redox state in the cat cortex during in vivo activation of NMDA receptors. Brain Res. 482, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Vanderkooi, J.M., Maniare, G., green, T.J., and Wilson, D.F. (1987), An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262, 5476–5482.

    PubMed  CAS  Google Scholar 

  • Vern, B., Whitehouse, W.C., and Schuette, W.H. (1975), Sodium fluorescein: a new reference for NADH fluorometry. Brain Res. 98, 405–409.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.F., Rumsey, W.L., and Vanderkooi, J.M. (1989), Oxygen distribution in isolated perfused liver observed by phosphorescence imaging. In: Oxygen Transport to Tissue (Rakusan, K., Biro, G.P., Goldstick, T.K., and Turek, Z., eds.), Adv. Exp. Med. Biol. 248, 109–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ince, C., Coremans, J.M.C.C., Bruining, H.A. (1992). In Vivo NADH Fluorescence. In: Erdmann, W., Bruley, D.F. (eds) Oxygen Transport to Tissue XIV. Advances in Experimental Medicine and Biology, vol 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3428-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6516-7

  • Online ISBN: 978-1-4615-3428-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics