Skip to main content

Role of Aluminum and Iron in Brain Disorders

  • Chapter
Treatment of Dementias

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 40))

Abstract

Aluminum and iron, the two most abundant elements in the earth’s crust, have very similar coordination chemistry1. Both form insoluble hydroxides at physiological pH. However, very early in evolution, living systems recognized the unique redox properties of iron and incorporated it in diverse biological reactions. Indeed, iron is essential to all forms of life. No such use has been discovered for aluminum and, until recently, it was considered harmless. Because all metal ions, including aluminum, are more soluble at acid pH, environmental insults such as acid rain have increased their bioavailability2,3. Living systems are yet to learn to cope with this new class of pollutants.

Supported by the Council for Tobacco Research to J.G.J.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Crumbliss and M. A. Garrison, Comparison of some aspects of coordination chemistry of aluminum (III) and iron (III), Comments Inorg. Chem. 8: 1 (1988).

    Article  CAS  Google Scholar 

  2. T. L. McDonald and R. B. Martin, Aluminum in biological systems, Trends in Biochem. Sci. 13: 15 (1988).

    Article  Google Scholar 

  3. J. J. Putterill and R. C. Gardner, Proteins with the potential to protect plants from A13+ toxicity. Biochem. Biophvs. Acta. 964: 137 (1988).

    Article  CAS  Google Scholar 

  4. R. D. Terry and R. Katzman, Senile dementia of the Alzheimer’s type, Ann. Neurology. 14: 497 (1987).

    Article  Google Scholar 

  5. L. Hayflick, The biology of human aging, Plastic and Reconstructive Surgery. 64: 536 (1981).

    Article  Google Scholar 

  6. R. J. Wurtman, Alzheimer’s disease. Scientific American. 252: 62 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. D. R. Crapper, S. S. Krishnan, A. J. Dalton, and S. Quittkat, Aluminum, neurofibrillary degeneration and Alzheimer’s disease, Brain 99: 67 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. D. Perl and A. Brody, Alzheimer’s Disease: X-ray spectroscopic evidence of aluminum accumulation in neurobibrillary tangle-baring neurons, Science. 208: 297 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. C. N. Martyn, C. Osmond, D. J. P. Barker, E. C. Harris, J. A. Edwardson, and R. F. Lacey, Geographical relation between Alzheimer’s disease and aluminum in drinking water. Lancet. Jan. 14: 59 (1989).

    Google Scholar 

  10. F. C. Womack and S. P. Colowick, Proton-dependent inhibition of yeast and brain hexokinase by aluminum in ATP preparations, Proc. Natl. Acad. Sci. USA 76: 5080 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. J. G. Joshi, Aluminum, a neurotoxin which affects diverse metabolic reactions, BioFactors 2: 163 (1990).

    PubMed  CAS  Google Scholar 

  12. H. S. Maker, D. D. Clarke, and A. L. Lajtha, Intermediary metabolism of carbohydrates and amino acids, in: “Basic Neurochemistry” G. J. Siegal, R. W. Albers, R. Katzman, and B. W. Agranoff, eds., p. 279, Little, Brown and Co., Boston (1972).

    Google Scholar 

  13. S.-W. Cho and J. G. Joshi, Characterization of glucose-6-phosphate isozymes from human and pig brain, Neuroscience. 38: 819 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. S.-W. Cho and J. G. Joshi, Inactivation of glucose-6-phosphate dehydrogenase isozymes from human and pig brain by aluminum, J. Neurochem. 53: 616 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. S.-W. Cho and J. G. Joshi, Inactivation of Baker’s yeast glucose-6-phosphate dehydrogenase by aluminum, Biochemistry 28: 3613 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. S. Ogushi, J. W. R. Lowson, G. P. Dobson, R. L. Veech, and K. Uyeda, New transient activator of phosphofructokinase during rapid glycolysis in the brain, J. Biol. Chem. 265: 10943 (1990).

    CAS  Google Scholar 

  17. C. G. Suhayda and A. Huag, Organic acids prevent aluminum induced conformation changes in calmodulin, Biochem. Biophys. Acta. 774: 36 (1983).

    Google Scholar 

  18. S.-W. Cho and J. G. Joshi, Effect of long-term feeding of aluminum chloride on hexokinase and glucose-6-phosphate dehydrogenase in the brain, Toxicology 48: 61 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. L. Sokoloff, The relationship between functions and energy metabolism, its use in the localization of functional activity in the nervous system, Neurosci. Res. Prog. Bull. 19: 159 (1981).

    CAS  Google Scholar 

  20. M. Clauberg, C. B. Smith, T. Dang, L. Sokoloff and J. G. Joshi, Effect of chronic dietary AICI3 on local cerebral glucose utilization in rats, J. Cell Biol. 111(5):496a Abstr.# 2783 (Nov. 1990).

    Google Scholar 

  21. D. Marcus, J.-deLeon Mony, J. Goldman, J. Logan, D. R. Christmas, A. P. Wolf, J. P. Fowler, K. Hunter, J. Tsai, J. Pearson, and M. L. Freedman, Altered glucose metabolism in microvessels from patients with Alzheimer’s disease, Annals of Neurol. 26: 91 (1989).

    Article  CAS  Google Scholar 

  22. P. Aisen and I. Listowsky, Iron transport and storage proteins, Annual Review of Biochem. 49: 357 (1980).

    Article  CAS  Google Scholar 

  23. E. C. Theil, Regulation of ferritin and transferrin receptor mRNA, J. Biol. Chem. 265: 4771 (1990).

    PubMed  CAS  Google Scholar 

  24. G. Farrar, P. Altmann, S. Welch, and J. A. Blair, Gallium-transferrin binding in Alzheimer’s disease. Lancet March: 307-309 and June: 1348 (1990).

    Google Scholar 

  25. A. J. Roskams and J. R. Connor, Aluminum access to the brain: A role for transferrin and its receptor, Proc. Natl. Acad. Sci. USA 87: 9024 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. J. R. Connor, B. S. Snyder, J. L. Beard, R. E. Fine, and E. J. Mufson, The regional distribution of iron and iron regulatory proteins in the brain in Aging and Alzheimer’s disease, J. Neurosci. Res. (1991). In press.

    Google Scholar 

  27. J. M. Hill, The distribution of iron in brain, in: “Brain Iron: Neurochemical and behavioral aspects”, M. B. H. Youdin, ed., Taylor and Francis, London, New York, p. 1 (1988).

    Google Scholar 

  28. J. G. Joshi, Ferritin: An iron storage protein with diverse functions, BioFactors 1: 207 (1988).

    PubMed  CAS  Google Scholar 

  29. D. J. Price and J. G. Joshi, Ferritin: Binding of beryllium and other divalent metal ions, J. Biol. Chem. 258: 10873 (1983).

    PubMed  CAS  Google Scholar 

  30. R. C. Lindenschmidt, L. E. Sendelbach, H. P. Witschi, D. J. Price, J. Fleming, and J. G. Joshi, Toxicol. Applied Pharmacol. 82: 344 (1986).

    Article  CAS  Google Scholar 

  31. S. R. Sczekan and J. G. Joshi, Metal binding properties of phytoferritin and synthetic iron cores. Biochem. Biophys. Acta. 990: 8 (1989).

    Article  CAS  Google Scholar 

  32. J. Fleming and J. G. Joshi, Ferritin: Isolation of Aluminum-ferritin complex from brain, Proc. Natl. Acad. Sci. USA. 84: 7866 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. J. Fleming and J. G. Joshi, Ferritin: The role of Aluminum in Ferritin function, Neurobiol. of Aging (1991). In press.

    Google Scholar 

  34. I. Grundke-Iqbal, J. Fleming, Y.-C. Tung, H. Lassmann, K. Iqbal, and J. G. Joshi, Ferritin is a component of the nuritic (senile) plaque in Alzheimer’s dementia, Acta Neuropathol. 81: 105 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. S. San-Marina, D. M. Nicholls, T. P. A. Kruck, and D. R. C. McLachlan, Aluminum effects on synthesis of brain metal-binding proteins, FASEB J. Abstr.#4344: A1014 (1990).

    Google Scholar 

  36. I. Fridovich, Superoxide dismutases. An adaptation to a paramagnetic gas, J. Biol. Chem. 264: 7761 (1989).

    PubMed  CAS  Google Scholar 

  37. W. A. Banks and A. J. Kastin, Aluminum alters the permeability of the bloodbrain barrier, Neuropharmacology. 24: 407 (1985).

    Article  PubMed  CAS  Google Scholar 

  38. H. Wisniewski and J. A. Sturman, Neurotoxicity of Aluminum in: “Aluminum and Health: A Critical Review”, H. J. Gitelman, ed., Mercel & Dekker, New York, Basel, p.125 (1989).

    Google Scholar 

  39. J. G. Gutteridge, I. Quinlan, ??? Clark, and B. Halliwell, Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts, Biochem. Biophys. Acta. 835: 441 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. E. R. Stadtman and C. N. Oliver, Metal catalyzed oxidation of proteins, J. Biol. Chem. 266: 2005 (1991).

    Google Scholar 

  41. C. T. Grant and G. Taborsky, The generation of labile, protein-bound phosphate by phosphoprotein oxidation linked to autooxidation of ferrons ion, Biochemistry 5: 544 (1966).

    Article  PubMed  CAS  Google Scholar 

  42. V. V. Desphande and J. G. Joshi, VitC·Fe(III) induced loss of the covalently bound phophate and enzyme activity of phosphoglucomutase, J. Biol. Chem. 260: 757 (1985).

    Google Scholar 

  43. D. J. Selkoe, Deciphering Alzheimer’s disease. The amyloid precursor protein yields new clues, Science. 248: 1058 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. M. Clauberg and J. G. Joshi, Serine proteases, Inhibitors and aluminum, J. Cell Biol. 111(5):495a Abstr.# 2778 (1990).

    Google Scholar 

  45. B. D. Watson and M. D. Ginsberg, Mechanisms of lipid peroxidation potential by ischemia in brain in oxygen radicals and tissue injury, in: “Proc. of the Upjohn Symposium”, B. Halliwell, ed., p. 81 (1988).

    Google Scholar 

  46. K. Jellinger, W. Paulus, I. Grundke-Iqbal, P. Riederer, and M. B. H. Youdin, Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases, Journal of Neural Transmission. 2: 327 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. D. T. Dexter, A. Carayon, M. Vidailhet, M. Ruberg, F. Agid, Y. Agid, A. J. Lees, F. R. Wells, P. Jenner, and C. D. Marsden, Decreased ferritin levels in brain in Parkinson’s disease, J. Neurochem. 55: 16 (1990).

    Article  PubMed  CAS  Google Scholar 

  48. A. Goate, M.-C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James, R. Mant, P. Newton, K. Rooke, P. Roques, C. Talbot, M. Pericak-Vance, A. Roses, R. Williamson, M. Rossor, M. Owen, and J. Hardy, Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature. 349: 704 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joshi, J.G., Clauberg, M., Dhar, M.S. (1992). Role of Aluminum and Iron in Brain Disorders. In: Meyer, E.M., Simpkins, J.W., Yamamoto, J., Crews, F.T. (eds) Treatment of Dementias. Advances in Behavioral Biology, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3432-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3432-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6518-1

  • Online ISBN: 978-1-4615-3432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics