Skip to main content

Extension of Coupled Cluster Methodology to Open Shells: State Universal Approach

  • Chapter
Recent Progress in Many-Body Theories

Abstract

A brief description of basic models and methods that are currently exploited in molecular electronic structure calculations indicates the desirability of extending the single-reference coupled-cluster (CC) approach to the multi-reference (MR) case. The recently developed explicit formalism of orthogonally spin-adapted, state-universal (or Hilbert space) MR-CC theory for the special case of closed-shell type references is applied to a simple four-electron model system formed by two interacting hydrogen molecules. Varying the geometry of the nuclear framework from the square configuration to a linear one this model simulates the breaking of a single chemical bond and enables a continuous transition to be made between the degenerate and non-degenerate regimes. The simplicity of the model enables a comparison with the exact solution, obtained by the full configuration interaction method. In this way the performance of the MR-CC approach at both linear and non-linear levels of approximation, nature and multiplicity of MR-CC solutions and the role played by the intruder states can be examined in considerable detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. McWeeny, “Methods of Molecular Quantum Mechanics”, 2nd ed., Academic Press, New York (1989).

    Google Scholar 

  2. S. Wilson, “Electron Correlation in Molecules”, Clarendon, Oxford (1984).

    Google Scholar 

  3. J. Paldus and J. Čížek, Adv. Quantum Chem., 9:105 (1975).

    Article  ADS  Google Scholar 

  4. R.G. Parr, “The Quantum Theory of Molecular Electronic Structure”, Benjamin, New York (1963).

    Google Scholar 

  5. D.L. Cooper, J. Gerratt, and M. Raimondi, Nature, 323:699 (1986); Adv. Chem. Phys., 69:319 (1987); Int. Rev. Phys. Chem., 7:59 (1988); Topics in Current Chemistry, 153:41 (1990); Chem. Rev., 91:929 (1991).

    Article  ADS  Google Scholar 

  6. X. Li and J. Paldus, J. Mol. Struct. (Theochem), 229:249 (1991).

    Article  Google Scholar 

  7. C.C.J. Roothaan, Rev. Mod. Phys., 23:69 (1951).

    Article  ADS  MATH  Google Scholar 

  8. A.C. Wahl, J. Chem. Phys., 41:2600 (1964).

    Article  ADS  Google Scholar 

  9. H.F. Schaefer III, “The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results”, Addison-Wesley, Reading, MA (1972).

    Google Scholar 

  10. I. Shavitt, in “Methods of Electronic Structure Theory”, H.F. Schaefer, III, ed., Plenum Press, New York (1977), pp. 189–275.

    Google Scholar 

  11. W. Duch and J. Karwowski, Comp. Phys. Reports, 2:93 (1985).

    Article  ADS  Google Scholar 

  12. J. Paldus, in: “Theoretical Chemistry: Advances and Perspectives”, Vol. 2, H., Eyring and D. Henderson, eds., Academic Press, New York (1976), pp. 131–290; in: “Mathematical Frontiers in Computational Chemical Physics”, IMA Series, Vol. 15., D.G. Truhlar, ed., Springer-Verlag, New York (1988), pp. 262-299.

    Google Scholar 

  13. I. Shavitt in: “New Horizons in Quantum Chemistry”, P.-O. Löwdin and B. Pullman, eds., R.eidel, Dordrecht, Holland (1983), pp. 279–293; in “Mathematical Frontiers in Computational Chemical Physics”, IMA Series, Vol. 15., D.G. Truhlar, ed., Springer-Verlag, New York (1988), pp. 300-349.

    Chapter  Google Scholar 

  14. F.A. Matsen and R. Pauncz, “The Unitary Group in Quantum Chemistry”, Elsevier, Amsterdam (1986).

    Google Scholar 

  15. B.O. Roos and P.E.M. Siegbahn, in: “Methods of Electronic Structure Theory”, H.F. Schaefer III, ed., Plenum Press, New York (1977), pp. 277–318.

    Google Scholar 

  16. J. Paldus and B. Jeziorski, Theor. Chim. Acta, 73:81 (1988).

    Article  Google Scholar 

  17. K.A. Brueckner, Phys. Rev., 100:36 (1955).

    Article  ADS  MATH  Google Scholar 

  18. J. Goldstone, Proc. Phys. Soc. (London) A, 239:267 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. Hubbard, Proc. Phys. Soc. (London) A, 240:539 (1957); 243:336 (1958); 244:199 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. N.M. Hugenholtz, Physica, 23:533, 481 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. B. Brandow, Rev. Mod. Phys., 39:771 (1967); Adv. Quantum Chem., 10:187 (1977).

    Article  ADS  Google Scholar 

  22. I. Lindgren and J. Morrison “Atomic Many-Body Theory”, Springer-Verlag, Berlin (1982).

    Book  Google Scholar 

  23. (a) S.A. Kucharski and R.J. Bartlett, Adv. Quantum Chem., 18:281 (1986); (b) P. Čárský and M. Urban “Ab Initio Calculations. Methods and Applications in Chemistry”, Lecture Notes in Chemistry, Vol. 16, Springer-Verlag, Berlin (1980).

    Article  ADS  Google Scholar 

  24. K. Jankowski, in: “Methods in Computational Chemistry”, Vol. 1, S. Wilson, ed., Plenum Press, New York (1987), pp. 1–116.

    Google Scholar 

  25. S. Wilson, K. Jankowski, and J. Paldus, Int. J. Quantum Chem., 23:1781 (1983); 28:525 (1985).

    Article  Google Scholar 

  26. S. Zarrabian and J. Paldus, Int. J. Quantum Chem., 38:761 (1990).

    Article  Google Scholar 

  27. J. Čážek, J. Chem. Phys., 45:4256 (1966); Advan. Chem. Phys., 14:35 (1969); in: Ref. 30.

    Article  Google Scholar 

  28. J. Paldus, J. Čážek, and I. Shavitt, Phys. Rev. A, 5:50 (1972).

    Article  ADS  Google Scholar 

  29. R.J. Bartlett, Annu. Rev. Phys. Chem., 32:359 (1981); J. Phys. Chem., 93:1697 (1989), and references therein.

    Article  ADS  Google Scholar 

  30. R.J. Bartlett, ed., Special issue of Theor. Chim. Acta with Proceedings of the Workshop on CC Theory at the Interface of Atomic Physics and Quantum Chemistry, Institute for Theoretical Atomic and Molecular Physics at the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, in press.

    Google Scholar 

  31. J. Paldus, “Coupled Cluster Theory”, in: “Methods in Computational Molecular Physics”, NATO ASI Series, S. Wilson and G.H.F. Diercksen, eds., Plenum Press, New York (1992).

    Google Scholar 

  32. J.E. Mayer and M.G. Mayer, “Statistical Mechanics”, Chap. 13, J. Wiley and Sons, New York (1940).

    MATH  Google Scholar 

  33. D. Mukherjee and S. Pal, Adv. Quantum Chem., 20:292 (1989).

    ADS  Google Scholar 

  34. K. Jankowski and J. Paldus, Int. J. Quantum Chem., 18:1243 (1980).

    Article  Google Scholar 

  35. J. Paldus, P.E.S. Wormer, and M. Bénard, Coll. Czech. Chem. Commun., 53:1919 (1988).

    Article  Google Scholar 

  36. U. Kaldor, Int. J. Quantum. Chem., 28:103 (1985).

    Article  Google Scholar 

  37. N. Iijima and A. Saika, Int. J. Quantum Chem., 27:481 (1985).

    Article  Google Scholar 

  38. J. Paldus, L. Pylypow, and B. Jeziorski, in: “Many-Body Methods in Quantum Chemistry”, U. Kaldor, ed., Lecture Notes in Chemistry, Vol. 52, Springer-Verlag, Berlin (1989), pp. 151–170.

    Google Scholar 

  39. A. Balková, S.A. Kucharski, L. Meissner, and R.J. Bartlett, in: Ref. 30.

    Google Scholar 

  40. F. Coester, in: “Lectures in Theoretical Physics”, Vol. 11B, K.T. Mahanthappa and W.E. Brittin, eds., Gordon and Breach, New York, pp. 157–186.

    Google Scholar 

  41. R. Offerman, W. Ey, and H. Kümmel, Nucl Phys. A, 273:349 (1976); R. Offerman, Nucl. Phys. A, 273:368 (1976); W. Ey, Nucl. Phys. A, 296:189 (1978).

    Article  ADS  Google Scholar 

  42. D. Mukherjee, R.K. Moitra, and A. Mukhopadhyay, Mol. Phys., 33:955 (1977); A. Haque and D. Mukherjee, J. Chem. Phys., 80:5058 (1984).

    Article  ADS  Google Scholar 

  43. I. Lindgren, Int. J. Quantum. Chem., Symp. 12:33 (1978); J. Phys. B, 24:1143 (1991); I. Lindgren and D. Mukherjee Phys. Rep., 151:93 (1987).

    Google Scholar 

  44. W. Kutzelnigg, J. Chem. Phys., 80:822 (1984); W. Kutzelnigg, D. Mukherjee, and S. Koch, Chem. Phys., 87:5902 (1987).

    Article  ADS  Google Scholar 

  45. L. Stolarczyk and H.J. Monkhorst, Phys. Rev. A, 32:725, 743 (1985); 37:1908, 1926 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Haque and U. Kaldor, Chem. Phys. Lett., 117:347 (1985); 120:261 (1985); Int. J. Quantum. Chem., 29:425 (1986); U. Kaldor, J. Chem. Phys., 87:467 (1987).

    Article  ADS  Google Scholar 

  47. B. Jeziorski and H.J. Monkhorst, Phys. Rev. A, 24:1668 (1981).

    Article  ADS  Google Scholar 

  48. J. Paldus, in: “New Horizons of Quantum Chemistry”, P.-O. Löwdin and B. Pullman, eds., Reidel, Dordrecht, Holland (1983), pp. 31–60.

    Chapter  Google Scholar 

  49. W.D. Laidig and R.J. Bartlett, Chem. Phys. Lett., 104:424 (1984); W.D. Laidig, P. Saxe, and R.J. Bartlett, J. Chem. Phys., 86:887 (1987).

    Article  ADS  Google Scholar 

  50. B. Jeziorski and J. Paldus, J. Chem. Phys., 88:5673 (1988).

    Article  ADS  Google Scholar 

  51. L. Meissner, K. Jankowski, and J. Wasilewski, Int. J. Quantum Chem., 34:535 (1988); L. Meissner, S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys., 91:6187 (1989).

    Article  Google Scholar 

  52. P. Piecuch and J. Paldus, Theor. Chim. Acta, in press.

    Google Scholar 

  53. B. Jeziorski and J. Paldus, J. Chem. Phys., 90:2714 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  54. K. Jankowski, J. Paldus, and J. Wasilewski, J. Chem. Phys., 95:3549 (1991).

    Article  ADS  Google Scholar 

  55. K. Jankowski, J. Wasilewski, and J. Paldus, unpublished results.

    Google Scholar 

  56. A. Balková, S.A. Kucharski, and R.J. Bartlett, Chem. Phys. Lett., 182:511 (1991).

    Article  ADS  Google Scholar 

  57. J. Paldus, P. Piecuch, L. Pylypow, and B. Jeziorski, unpublished results.

    Google Scholar 

  58. P. Piecuch and J. Paldus, unpublished results.

    Google Scholar 

  59. J. Paldus, M. Takahashi, and R.W.H. Cho, Phys. Rev. B, 30:4267 (1984).

    Article  ADS  Google Scholar 

  60. P. Piecuch, S. Zarrabian, J. Paldus, and J. Čížek, Phys. Rev. B, 42:3351 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paldus, J., Piecuch, P., Jeziorski, B., Pylypow, L. (1992). Extension of Coupled Cluster Methodology to Open Shells: State Universal Approach. In: Ainsworth, T.L., Campbell, C.E., Clements, B.E., Krotscheck, E. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3466-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3466-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6535-8

  • Online ISBN: 978-1-4615-3466-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics