Skip to main content

Recent Advances in Chemical Modeling of Bacterial Bioluminescence Mechanism

  • Chapter
Photobiology

Abstract

Bacterial luciferase catalyzes the oxidation of FMNH2and a long-chain aliphatic aldehyde by O2to yield FMN, fatty acid, water, and light. The in vitro emission spectrum has a peak near 490 nm and a quantum yield of 0.1-0.2, but both could vary somewhat depending on the bacterial strain from which the luciferase is obtained. The mechanism for this bioluminescent reaction has been the focus of considerable research interests. In this report, our recent studies on the bacterial bioluminescence mechanism will be summarized, with special emphases on a new radical mechanism and the use of chemical models. Some earlier findings from our and other laboratories which are of mechanistic significance will also be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balny, C., and Hastings, J. W., 1975, Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry, 14, 4719–4723.

    Article  PubMed  CAS  Google Scholar 

  • Cline, T. W., and Hastings, J. W., 1972, Mutationally altered bacterial luciferase. Implications for subunit functions. Biochemistry, 11, 3359–3370.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, D. K., Michaliszyn, G. A., Bogacki, I. G., and Meighen, E. A., 1973, Conversion of aldehyde to acid in the bacterial bioluminescent reaction. Biochemistry 12, 4911–4918.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, E., and Hastings, J. W., 1972, A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochemical and Biophysical Research Communications 47, 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Gast, R., and Lee, J., 1978, Isolation of the in vivo emitter in bacterial bioluminescence. Proceedings of the National Academy of Sciences USA 75, 833–837.

    Article  CAS  Google Scholar 

  • Hastings, J. W., and Balny, C., 1975, The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. The Journal of Biological Chemistry 250, 7288–7293.

    PubMed  CAS  Google Scholar 

  • Hastings, J. W., and Nealson, K. H., 1977, Bacterial Bioluminescence. Annual Review of Microbiology 31, 549–595.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, J. W., Balny, C., LePeuch, C., and Douzou, P., 1973, Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proceedings of the National Academy of Sciences USA 70, 3468–3472.

    Article  CAS  Google Scholar 

  • Hastings, J. W., Tu, S.-C., Becvar, J. E., and Presswood, R. P., 1979, Bioluminescence from the reaction on FMN, H2O2, and long chain aldehyde with bacterial luciferase. Photochemistry and Photobiology 29, 383–387.

    Article  CAS  Google Scholar 

  • Kemal, C., and Bruice, T. C., 1976, Simple synthesis of a 4a-hydroperoxy adduct of a 1,5dihydroflavine: Preliminary studies of a model for bacterial luciferase. Proceedings of the National Academy of Sciences USA 73, 995–999.

    Article  CAS  Google Scholar 

  • Koka, P., and Lee, J., 1979, Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescent bacterium Photobacterium phosphoreum. Proceedings of the National Academy of Sciences USA 76, 3068–3072.

    Article  CAS  Google Scholar 

  • Kurfürst, M., Ghisla, S., and Hastings, J. W., 1983, Bioluminescence emission from the reaction of luciferase-flavin mononucleotide radical with O2-•. Biochemistry 22, 1521–1525.

    Article  PubMed  Google Scholar 

  • Kurfürst, M., Ghisla, S., and Hastings, J. W., 1984, Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction. Proceedings of the National Academy of Sciences USA 81, 2990–2994.

    Article  Google Scholar 

  • Lee, J., O’Kane, D. J., and Visser, A. J. W. G., 1985, Spectral properties and function of two lumazine proteins from Photobacterium. Biochemistry 24, 1476–1483.

    Article  CAS  Google Scholar 

  • Macheroux, P., Ghisla, S., Kurfürst, M., and Hastings, J. W., 1984, Studies on the bacterial luciferase reaction: isotope effects on the light emission. Flavins and Flavoproteins edited by R. C. Bray, P. C. Engel, and S. G. Mayhew (Berlin: de Gruyter), pp.669–672.

    Google Scholar 

  • Macheroux, P., Eckstein, J., and Ghisla, S., 1987, Studies on the mechanism of bacterial bioluminescence. Evidence compatible with a one electron transfer process and a CIEEL mechanism in the luciferase reaction. Flavins and Flavoproteins edited by D. E. Edmondson and D. B. McCormick (Berlin: de Gruyter), pp. 613–619.

    Google Scholar 

  • Mager, H. I. X., and Addink, R., 1984, On the role of some flavin adducts as one-electron donors. Flavins and Flavoproteins edited by R. C. Bray, P. C. Engel, and S. G. Mayhew (Berlin: de Gruyter), pp. 37–40.

    Google Scholar 

  • Mager, H. I. X., and Tu, S.-C., 1987, One-electron transfers in flavin systems: Relevance to the postulated CIEEL mechanism in bacterial bioluminescence. Flavins and Flavoproteins edited by D. E. Edmondson and D. B. McCormick (Berlin: de Gruyter), pp. 583–592.

    Google Scholar 

  • Mager, H. I. X., and Tu, S.-C., 1988, Spontaneous formation of flavin radicals in aqueous solution by comproportionation of a flavinium cation and a flavin pseudobase. Tetrahedron 44, 5669–5674.

    Article  CAS  Google Scholar 

  • Mager, H. I. X., Sazou, D., Liu, Y. H., Tu, S.-C., and Kadish, K. M., 1988, Reversible one-electron generation of 4a,5-substituted flavin -adical cations: Models for a postulated key intermediate in bacterial bioluminescence. Journal of the American Chemical Society 110, 3759–3762.

    Article  CAS  Google Scholar 

  • O’Kane, D. J., Karle, V. A., and Lee, J., 1985, Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum :Bioluminescence properties. Biochemistry, 24, 1461–1467.

    Article  PubMed  Google Scholar 

  • Schuster, G. B., 1979, Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism. Accounts of Chemical Research 12, 366–373.

    Article  CAS  Google Scholar 

  • Tu, S.-C., 1979, Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols. Biochemistry 18, 5940–5945.

    Article  PubMed  CAS  Google Scholar 

  • Tu, S.-C., 1982, Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins. The Journal of Biological Chemistry 257, 3719–3725.

    PubMed  CAS  Google Scholar 

  • Tu, S.-C., 1986, Bacterial luciferase 4a-hydroperoxyflavin intermediates: stabilization, isolation, and properties. Methods in Enzymology 133, 128–139.

    Article  PubMed  CAS  Google Scholar 

  • Tu, S.-C., Wang. L.-H., and Yu, Y., 1987, Applications of deuterium and tritium isotope effects to the elucidation of kinetic mechanisms of flavoprotein hydroxylases. Flavins and Flavoproteins edited by D. E. Edmondson and D. B. McCormick (Berlin: de Gruyter), pp. 539–548.

    Google Scholar 

  • Vervoort, J., Muller, F., Lee, J., van den Berg, W. A. M., and Moonen, C. T. W., 1986, Identifications of the true carbon-13 nuclear magnetic resonance spectrum of the stable intermediate II in bacterial luciferase. Biochemistry 25, 8062–8067.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tu, SC., Mager, H.I.X. (1991). Recent Advances in Chemical Modeling of Bacterial Bioluminescence Mechanism. In: Riklis, E. (eds) Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3732-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3732-8_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6661-4

  • Online ISBN: 978-1-4615-3732-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics