Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 220))

  • 405 Accesses

Abstract

A partially ionized gas consists of free electrons, positive (and perhaps negative) ions and neutral particles. In this article we are interested in the behavior of partially ionized gases in electromagnetic fields. The electron and ions are accelerated or decelerated in the fields present, and during their trajectories they collide with the background particles, losing energy and momentum to the neutral gas. Because the electrons are so much lighter than the ions, it is the electrons which are thus primarily responsible for the conductivity of the gas. For the same reason, it is through the agent of the electrons that electrical energy is deposited into the gas in the form of gas heating or excitation. A knowledge of the electron component is therefore fundamental to a description of phenomena in partially ionized gases. The aim of this article is to present a brief description of the electron component of partially ionized gases in terms of electron transport, excitation and ionization rate coefficients. Transport coefficients, such as electron drift velocity or mobility and the diffusion coefficients, describe the response of the electrons on the average to the combined influences of the fields and the collisions, while excitation and ionization rate coefficients describe the flow of energy from the electrons to the neutral gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kumar, H.R. Skullerud and R.E. Robson, Aust. J. Phys., 33:343 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. L.G.H. Huxley and R.W. Crompton, “The Diffusion and Drift of Electrons in Gases”, John Wiley & Sons, Inc., New York, 1974.

    Google Scholar 

  3. J. Dutton, J. Phys. Chem. Ref. Data, 4:577 (1975).

    Article  ADS  Google Scholar 

  4. J.W. Gallagher, E.C. Beaty, J. Dutton and L.C. Pitchford, J. Phys. Chem. Ref. Data, 12:109 (1983).

    Article  ADS  Google Scholar 

  5. W.P. Allis, in: “Handbuch der Physik”, S. Flugge, ed., Springer, Berlin (1956).

    Google Scholar 

  6. L.C. Pitchford, S.V. ONeil and J.R. Rumble, Jr., Phys. Rev.A, 23:294 (1981).

    Article  ADS  Google Scholar 

  7. R. Winkler, G.L. Braglia, A. Hess and J. Wilhelm, Beitr. Plasmaphys., 24:657 (1984).

    Article  ADS  Google Scholar 

  8. S.L. Lin, R.E. Robson and E.A. Mason, J. Chem. Phys., 71:3483 (1979).

    Article  ADS  Google Scholar 

  9. P. Segur, M. Yousfi, J.P. Boeuf, E. Marode, A.J. Davies, and C.J. Evans, in: “Electrical Breakdown and Discharges in Gases”, E.E. Kunhardt and L.L. Luessen, eds. Plenum, New York, (1983).

    Google Scholar 

  10. T. Itoh and T. Musha, J. Phys. Soc. Jpn., 15:1675 (1960).

    Article  ADS  Google Scholar 

  11. J.P. Boeuf and E. Marode, J. Phys. D, 15:2069 (1982).

    Article  Google Scholar 

  12. T.J. Moratz, L.C. Pitchford, and J.N. Bardsley, J. Appl. Phys., 61:2146 (1987).

    Article  ADS  Google Scholar 

  13. H.R. Skullerud, J. Phys. D, 1:1567 (1968).

    Article  ADS  Google Scholar 

  14. L. Friedland, Phys. Fluids, 20:1461 (1977).

    Article  ADS  Google Scholar 

  15. Y.M. Li, L.C. Pitchford, and T.A. Moratz, to appear in Appl. Phys. Lett. (1989).

    Google Scholar 

  16. G.L. Braglia, L. Romano and M. Diligenti, Lett. Nuovo Cim., 35:193 (1982).

    Article  Google Scholar 

  17. P. Segur, M. Yousfi, M.H. Kadri and M.C. Bordage, Transport Theory and Stat. Phys., 15:705 (1986).

    Article  ADS  MATH  Google Scholar 

  18. I.P. Shkarofsky, T.W. Johnston and M.P. Bachynski, “The Particle Kinetics of Plasmas”, Addison-Wesley, Reading, (1966).

    Google Scholar 

  19. K. Kumar, Phys. Repts., 112:319 (1984).

    Article  ADS  Google Scholar 

  20. A.V. Phelps and L.C. Pitchford, Phys. Rev.A, 31:2932 (1985).

    Article  ADS  Google Scholar 

  21. H. Tagashira, Y. Sakai and S. Sakamoto, J. Phys.D, 10:1051 (1977)

    Article  ADS  Google Scholar 

  22. L.S. Frost and A.V. Phelps, Phys. Rev., 127:1621 (1962).

    Article  ADS  Google Scholar 

  23. W.L. Morgan, JILA Information Center Report No. 19, unpublished, (1979).

    Google Scholar 

  24. T. Holstein, Phys. Rev., 70:367 (1946).

    Article  ADS  Google Scholar 

  25. S. Yoshida, A.V. Phelps and L.C. Pitchford, Phys. Rev.A, 27:2858 (1983).

    Article  ADS  Google Scholar 

  26. R.E. Robson and K.F. Ness, Phys. Rev.A, 33:2068 (1986).

    Article  ADS  Google Scholar 

  27. Y. Tzeng and E.E. Kunhardt, Phys. Rev.A, 34:2148 (1986).

    Article  ADS  Google Scholar 

  28. E.E. Kunhardt and Y. Tzeng, Phys. Rev.A, 34:2158 (1986).

    Article  ADS  Google Scholar 

  29. P.J. Drallos and J.M. Wadehra, J. Appl. Phys., 63:5601 (1988).

    Article  ADS  Google Scholar 

  30. E.D. Cashwell and C.J. Everett, “A Practical Manual on the Monte Carlo Method for Random Walk Problems”, Pergamon Press, Inc., New York, (1959).

    Google Scholar 

  31. E.A. Mason and E.W. McDaniel, “Transport Properties of Ions in Gases”, John Wiley & Sons, Inc., New York, (1988).

    Book  Google Scholar 

  32. P. Bayle, J. Vacquie and M. Bayle, Phys. Rev.A, 34:360 (1986).

    Article  ADS  Google Scholar 

  33. J.H. Yee, R.A. Alvarez, D.J. mayhall, D.P. Byrne, and J. DeGroot, Phys. Fluids, 29:1238 (1986).

    Article  ADS  MATH  Google Scholar 

  34. L. Vriens, R.A.J. Keijser, and F.A.S. Ligthart, J. Appl. Phys., 49:3807 (1978).

    Article  ADS  Google Scholar 

  35. W.L. Morgan and L. Vriens, J. Appl. Phys., 51:5300 (1980).

    Article  ADS  Google Scholar 

  36. J.H. Ingold, in: “Gaseous Electronics, Electrical Discharges”, M.N. Hirsch and H.J. Oskam, eds., Academic, New York, (1978).

    Google Scholar 

  37. A.V. Phelps, B.M. Jelenkovic and L.C. Pitchford, Phys. Rev.A 36:5327 (1987).

    Article  ADS  Google Scholar 

  38. K.G. Muller, Z. Phys., 169:432 (1962).

    Article  ADS  Google Scholar 

  39. L. Friedland, J. Phys. D, 7:2246 (1974).

    Article  ADS  Google Scholar 

  40. J.P. Boeuf and P. Segur, in: “Interactions Plasmas Froids Matériaux”, C. Lejeune, ed., Les Editions de Physique, Les Ulis, France, (1987).

    Google Scholar 

  41. L.C. Pitchford, Technical Report No. AFWAL-TR-85–2016 (1985).

    Google Scholar 

  42. A.G. Ponomarenko, V.N. Tishchenko, and V.A. Shveigert, Sov. J. Plasma Phys., 11:288 (1985).

    Google Scholar 

  43. J.H. Ingold and L.C. Pitchford, Bull. Am. Phys. Soc., 30:143 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pitchford, L.C. (1990). Electron Transport in Partially Ionized Gases. In: Capitelli, M., Bardsley, J.N. (eds) Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3780-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3780-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6685-0

  • Online ISBN: 978-1-4615-3780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics