Skip to main content

Excitation Spectrum of a 3He Impurity in 4He

  • Chapter
Recent Progress in Many-Body Theories

Abstract

Recent measurements of the effective mass of a 3He impurity on 4He films by Wang and Gasparini1 and Valles et al.2 have provided a challenging problem for many-body theorists. In the case of a very thin 4He film — less than a monolayer — one is studying a homogeneous, quasi-two-dimensional fluid. When the film thickness is increased the impurity begins to float on top of the film and the shape of the surface profile and layered structure of the film become important.3 The effective mass of the impurity depends on the density of surrounding particles and thus can be used as a sensitive test to our understanding of the behaviour of 4He fluid. Recent neutron scattering experiments4 on dilute mixtures of 3He (1% and 5%) in 4He measured the elementary excitation spectrum of 3He for wave vectors between 0.4 and 2.2 °A-1. They tested the effective mass approximation at finite momentum in the three dimensional, homogeneous 4He -3He mixture. Deviations from the quadratic Landau-Pomeranchuck spectrum with increasing momentum were found in agreement with earlier thermodynamical measurements.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xingwu Wang and F. M. Gasparini Phys. Rev. B38, 11245, (1988).

    ADS  Google Scholar 

  2. J. M. Valles, Jr., R. H. Higley, R. B. Johnson, and R. B. Hallock, Phys. Rev. Lett. 60, 428, (1988).

    Article  ADS  Google Scholar 

  3. E. Krotscheck, M. Saarela, and J. L. Epstein, Phys. Rev. Lett. 61, 1728 (1988), and J. Epstein, E. Krotscheck, and M. Saarela, to be published in Phys. Rev. Lett.

    Article  ADS  Google Scholar 

  4. B. Fåk, K. Guckelsberger, M. Körfer, R. Scherm, and A.J. Dianoux, submitted to Phys. Rev. B.

    Google Scholar 

  5. W. Greywall Phys. Rev. Lett. 41, 177 (1978).

    Article  ADS  Google Scholar 

  6. See J.C. Owen, Phys. Rev. B23, 5815 (1981), A. Fabrocini, S. Fantoni, S. Rosati, and A. Polls, Phys. Rev. B33, 6057 (1986) and references therein.

    ADS  Google Scholar 

  7. See R.N. Bhatt, Phys. Rev. B18,2108 (1978), M. Lücke, A. Szprynger, Phys. Rev. B26, 1374 (1982), W. Hsu, and D. Pines, Phys. Rev. B32, 7179 (1985), and references therein.

    ADS  Google Scholar 

  8. P. A. Whitlock, G. V. Chester M. H. Kalos, Phys. Rev. B38, 2418, (1988).

    ADS  Google Scholar 

  9. C. C. Chang and C. E. Campbell, Phys. Rev. B15, 4238 (1977).

    ADS  Google Scholar 

  10. E. Krotscheck, Phys. Rev. B33, 3158 (1986).

    ADS  Google Scholar 

  11. R.A. Smith, A. Kallio, M. Puoskari, and P Toropainen, Nucl. Phys. A328, 186 (1979), and, R.A. Smith, Phys. Lett. 85B, 183 (1979).

    ADS  Google Scholar 

  12. Q.N. Usmani, B. Friedman, and V.R. Pandharipande, Phys. Rev. B25, 4502 (1982).

    ADS  Google Scholar 

  13. P. A. Hilton, R. Scherm, and W. G. Stirling, J. Low Temp. Phys. 27, 851 (1977)).

    Article  ADS  Google Scholar 

  14. L. Pitaevskii, unpublished.

    Google Scholar 

  15. E. Krotscheck, M. Saarela, and J.L. Epstein, Phys. Rev. B38, 111 (1988).

    ADS  Google Scholar 

  16. C. Ebner, D.O. Edwards, Phys. Rep. 2, 77 (1970).

    Article  ADS  Google Scholar 

  17. R.A. Aziz, V.P.S. Nain, J.C. Carley, W.L. Taylor, and G.T. McColville, J. Chem. Phys. 70, 4330 (1979).

    Article  ADS  Google Scholar 

  18. J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 (1967).

    Article  ADS  Google Scholar 

  19. J.C. Owen, Phys. Rev. Lett. 47, 586 (1981).

    Article  ADS  Google Scholar 

  20. A.E. Watson, J.D. Reppy, and R.C. Richardson, Phys. Rev. 188, 384 (1969)

    Article  ADS  Google Scholar 

  21. M. Saarela, Phys. Rev. B33, 4596 (1986), and M. Saarela and J. Suominen, in Condenced Matter Theories, edited by J.S. Arponen, R.F. Bishop, and M. Manninen, vol. 3, 157 (Plenum Press, New York, 1988).

    ADS  Google Scholar 

  22. D. Greywall, Phys. Rev. {dbB20}, 2643 (1979).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saarela, M. (1990). Excitation Spectrum of a 3He Impurity in 4He. In: Avishai, Y. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3798-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3798-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6693-5

  • Online ISBN: 978-1-4615-3798-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics