Skip to main content

Abstract

Microtubules are the central component of the mitotic and meiotic spindles, and their proper assembly and function is vital to the fidelity of chromosome segregation. Twenty-five years of microtubule research has provided the fundamentals for understanding microtubule function. All microtubules are composed primarily of two different kinds of proteins, alpha tubulin and beta tubulin. The genes for these proteins have been isolated and sequenced from a wide variety of organisms. Alpha and beta tubulin form a heterodimer, which serves as the subunit of the microtubule polymer. The properties of the heterodimer are fairly well understood, and in vitro assembly experiments have defined parameters and factors that control the intrinsic ability of tubulin to self-assemble. Nontubulin proteins that bind to microtubules have been identified, and are candidates for elements that may control microtubule assembly, organization, and function in the cell. Biochemical approaches have been complemented by genetic analyses of microtubule function, demonstrating the essentiality of the tubulin proteins and dissecting their functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Ze’ev, A., Farmer, S.R., and Penman, S., 1979, Mechanisms of regulating tubulin synthesis in cultured mammalian cells, Cell, 17:319.

    Article  PubMed  Google Scholar 

  • Burke, D., Gasdaska, P., and Hartwell, L, 1989, Dominant effects of tubulin overexpression in Saccharomyces cerevisiae, Molecular and Cellular Biology, 9:1049.

    PubMed  CAS  Google Scholar 

  • Caron, J.M., Jones, A.L. and Kirschner, M.W., 1985, Autoregulation of tubulin synthesis in hepatocytes and fibroblasts, The Journal of Cell Biology, 101:1763.

    Article  PubMed  CAS  Google Scholar 

  • Caron, J.M., Jones, A.L., Rail, L.B. and Kirschner, M.W., 1985, Autoregulation of tubulin synthesis in enucleated cells, Nature, 317:648.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, D.W., 1987, The multitubulin hypothesis revisited: what have we learned?, The Journal of Cell Biology, 104:381.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, D.W., Lopata, M.A., Sherline, P., and Kirschner, M.W., 1981, Unpolymerized tubulin modulates the level of tubulin mRNAs, Cell, 25:537.

    Article  PubMed  CAS  Google Scholar 

  • Gay, D.A., Yen, T.J., Lau, J.T.Y., and Cleveland, D.W., 1987, Sequences that confer β-tubulin autoregulation through modulated mRNA stability reside within exon 1 of a β-tubulin mRNA, Cell, 50:671.

    Article  PubMed  CAS  Google Scholar 

  • Katz, W., and Solomon, F., 1988, Diversity among β-tubulins: a carboxy-terminal domain of yeast β-tubulin is not essential in vivo, Molecular and Cellular Biology, 8:2730.

    PubMed  CAS  Google Scholar 

  • Littauer, U.Z., Giveo, D., Thierauf, M., Ginzburg, I., and Postingl, H., 1986, Common and distinct tubulin binding sites for microtubule-associated proteins, Proc. Natl. Acad. Sci. U.S.A., 83:7162.

    Article  PubMed  CAS  Google Scholar 

  • Pachter, J.S., Yen, T.J., and Cleveland, D.W., 1987, Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs, Cell, 51:283.

    Article  PubMed  CAS  Google Scholar 

  • Pittinger, M.F., and Cleveland, D.W., 1985, Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression, The Journal of Cell Biology, 101:1941.

    Article  Google Scholar 

  • Schatz, P.J., Solomon, F., and Botstein, D., 1986, Genetically essential and nonessential a-tubulin genes specify functionally interchangeable proteins, Molecular and Cellular Biology, 6:3722.

    PubMed  CAS  Google Scholar 

  • Schatz, P.J., Solomon, F., and Botstein, D., 1988, Isolation and characterization of conditional-lethal mutations in the TUB1 a-tubulin gene of the yeast Saccharomyces cerevisiae, Genetics, 120:681.

    PubMed  CAS  Google Scholar 

  • Yen, T.J., Gay, D.A., Pachter, J.S., and Cleveland, D.W., 1988, Autoregulated changes in stability of polyriboso-me-bound β-tubulin mRNAs are specified by the first 13 translated nucleotides, Molecular and Cellular Biology, 8:1224.

    PubMed  CAS  Google Scholar 

  • Yen, T.J., Machlin, P.S., and Cleveland, D.W., 1988, Autoregulated instability of β-tubulin mRNAs recognition of the nascent amino terminus of β-tubulin, Nature, 334:580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinstein, B., Solomon, F. (1990). Consequences of Altering Tubulin Levels in Yeast. In: Kappas, A. (eds) Mechanisms of Environmental Mutagenesis-Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3808-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3808-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6698-0

  • Online ISBN: 978-1-4615-3808-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics