Skip to main content

A Modeling Approach to Elucidating the Distribution and Rates of Microbially Catalyzed Redox Reactions in Anoxic Groundwater

  • Chapter
Mathematical Modeling in Microbial Ecology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Microbially catalyzed redox reactions have an important influence on the chemical composition of many groundwaters. For example, carbon dioxide production during the oxidation of organic matter drives carbonate and silicate mineral dissolution in pristine carbonate aquifers and thus has a significant impact on water quality and secondary porosity (Chapelle 1993). Microbial reduction of Fe(III) to Fe(II) generates undesirably high concentrations of dissolved iron in aquifers (Lovley et al. 1990; Chapelle and Lovley 1992) and microbial sulfate reduction and methane production result in the accumulation of sulfide and methane (Thorstenson et al. 1979). The degradation of organic contaminants in polluted aquifers is a major mechanism for attenuating the transport of contaminants (Salanitro 1993; Lyngkilde and Christensen 1992; Baedecker et al. 1993). Thus, to better understand existing groundwater quality, and to predict the effect of perturbations on groundwater quality, it is necessary to have information on the types of microbial processes taking place in the subsurface and on the rates of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baedecker, M. J., I. M. Cozzarelli, D. I. Siegel, P. C. Bennett, and R. P. Eganhouse. 1993. Crude oil in a shallow sand and gravel aquifer: 3. Biogeochemical reactions and mass balance modeling in anoxic ground water. Appl. Geochem. 8:569–586.

    Article  Google Scholar 

  • Chapelle, F. H. 1993. Ground-water microbiology and geochemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Chapelle, F. H., and D. R. Lovley. 1990. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ. Microbiol. 56:1865–1874.

    Google Scholar 

  • Chapelle, F. H., and D. R. Lovley. 1992. Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Ground Water 30:29–36.

    Article  Google Scholar 

  • Chapelle, F. H., and P. B. McMahon. 1991. Geochemistry of dissolved inorganic carbon in a coastal-plain aquifer: 1. Sulfate from confining beds as an oxidant in microbial CO2 production. J. Hydrol. 127:85–108.

    Article  Google Scholar 

  • Chapelle, F. H., et al. 1995. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse ground water systems. Water Resour. Res. 31: 359–371.

    Article  Google Scholar 

  • Fish, W. 1993. Sub-surface redox chemistry: A comparison of equilibrium and reaction-based approaches. In H. E. Allen, E. M. Perdue, and D. S. Brown (eds.), Metals in Groundwater, pp. 73–101. Lewis Publishers, Ann Arbor, MI.

    Google Scholar 

  • Giraldo-Gomez, E., S. Goodwin, and M. S. Switzenbaum. 1992. Influence of mass transfer limitations on determination of the half saturation constant for hydrogen uptake in a mixed culture CH4 −producing enrichment. Biotech. Bioeng. 40:768–776.

    Article  Google Scholar 

  • Hostettler, J. D. 1984. Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am. J. Sci. 284:734–759.

    Article  Google Scholar 

  • Konikow, L. F., and D. B. Grove. 1977. Derivation of equations describing solute transport and dispersion in ground water. U.S. Geo. Surv. Water Res. Invest. 77:19–30.

    Google Scholar 

  • Lindberg, R. D., and D. D. Runnells. 1984. Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225:925–927.

    Article  Google Scholar 

  • Lovley, D. R., and F. H. Chapelle. 1995. Deep subsurface. Microbial. Processes. Rev. Geophsy. 33:365–381.

    Google Scholar 

  • Lovley, D. R., F. H. Chapelle, and E. J. P. Phillips. 1990. Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain. Geology 18:954–957.

    Article  Google Scholar 

  • Lovley, D. R., F. H. Chapelle, and J. C. Woodward. 1994. Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic ground water. Environ. Sci. Technol. 28:1025–1210.

    Article  Google Scholar 

  • Lovley, D. R., and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52:2993–3003.

    Article  Google Scholar 

  • Lyngkilde, J., and T. H. Christensen. 1992. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contamin. Hydrol. 10:291–307.

    Article  Google Scholar 

  • McMahon, P. B., and F. H. Chapelle. 1991a. Geochemistry of dissolved inorganic carbon in a coastal plain aquifer. 2. Modeling carbon sources, sinks, and ∂13C evolution. J. Hydrol. 127:109–135.

    Article  Google Scholar 

  • McMahon, P. B., and F. H. Chapelle. 1991b. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349:233–235.

    Article  Google Scholar 

  • Parkhurst, D. L., L. N. Plummer, and D. C. Thorstenson. BALANCE—A Computer Program for Calculating Mass Transfer for Geochemical Reactions in Groundwater. U. S. Geological Survey Water Resources Investigation Report 82-14. 1982. U. S. Geological Survey, Reston, VA.

    Google Scholar 

  • Plummer, L. N., J. F. Busby, R. W. Lee, and B. B. Hanshaw. 1990. Geochemical modeling of the Madison Aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour. Res. 26:1981–2014.

    Article  Google Scholar 

  • Plummer, L. N., D. L. Parkhurst, and D. C. Thorstenson. 1983. Development of reaction models for ground-water systems. Geochim. Cosmochim. Acta 47:665–686.

    Article  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26–32.

    Article  Google Scholar 

  • Salanitro, J. P. 1993. The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Water Monitor. Rented. 13:150–161.

    Article  Google Scholar 

  • Thorstenson, D. C, D. W. Fisher, and M. G. Croft. 1979. The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota. Water Resour. Res. 15:1479–1498.

    Article  Google Scholar 

  • Vroblesky, D. A., and F. H. Chapelle. 1994. Temporal and spatial changes in terminal electron accepting processes in a petroleum hydrocarbon contaminated aquifer and the significance for contaminant biodegradation. Water Resour. Res. 30:1561–1570.

    Article  Google Scholar 

  • Williams, P. M., and A. F. Carlucci. 1976. Bacterial utilization of organic matter in the deep sea. Nature 262:810–811.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lovley, D.R., Chapelle, F.H. (1998). A Modeling Approach to Elucidating the Distribution and Rates of Microbially Catalyzed Redox Reactions in Anoxic Groundwater. In: Koch, A.L., Robinson, J.A., Milliken, G.A. (eds) Mathematical Modeling in Microbial Ecology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4078-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4078-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6826-7

  • Online ISBN: 978-1-4615-4078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics