Skip to main content

Molecular Mechanism of Mechanical Stress-Induced Cardiac Hypertrophy

  • Chapter
The Hypertrophied Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 3))

  • 107 Accesses

Summary

Mechanical stress is a major cause of cardiac hypertrophy. Although the mechanisms by which mechanical load induces cardiomyocyte hypertrophy have long been a subject of great interest for cardiologists, the lack of a good in vitro system has hampered the understanding of the biochemical mechanisms. For these past several years, however, an in vitro neonatal cardiocyte culture system has made it possible to examine the biochemical basis for the signal transduction of mechanical stress. Passive stretch of cardiac myocytes cultured on silicone membranes activates phosphorylation cascades of many protein kinases, including protein kinase C, Raf-1 kinase, and extracellular signal-regulated kinases, and induces the expression of specific genes as well as an increase in protein synthesis. During that process, secretion and production of vasoactive peptides such as angiotensin II and endothelin are increased, and these peptides play critical roles in the induction of these hypertrophic responses. However, we have recendy obtained evidence suggesting that the vasoactive peptides are not indispensable for the development of mechanical stress-induced hypertrophic responses. The most important question—how mechanical stimulus is converted into biochemical signals—remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. 1990. Prognostic implications of echocar-diographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  2. Mann DL, Kent RL, Cooper G 4th. 1989. Load regulation of the properties of adult feline cardio-cytes: growth induction by cellular deformation. Circ Res 64:1079–1090.

    Article  PubMed  CAS  Google Scholar 

  3. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoch Y, Hoh E.Takaku F.Yazaki Y. 1990. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598.

    PubMed  CAS  Google Scholar 

  4. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E.Takaku F.Yazaki Y. 1991. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J Biol Chem 266:1265–1268.

    PubMed  CAS  Google Scholar 

  5. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984.

    Article  PubMed  CAS  Google Scholar 

  6. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T.Takano H, Hiroi Y, Ueki K.Tobe K, Kadowaki T, Nagai R, Yazaki Y. 1995. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 77:258–265.

    Article  PubMed  CAS  Google Scholar 

  7. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y 1996. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228.

    Article  PubMed  CAS  Google Scholar 

  8. Kira Y, Kochel PJ, Gordon EE, Morgan HE. 1984. Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am J Physiol 246:C247–C258.

    PubMed  CAS  Google Scholar 

  9. Komuro I, Yazaki Y. 1993. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55–75.

    Article  PubMed  CAS  Google Scholar 

  10. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571.

    Article  PubMed  CAS  Google Scholar 

  11. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. 1991. Oncogenes and signal transduction. Cell 64:281–302.

    Article  PubMed  CAS  Google Scholar 

  12. Blenis J. 1991. Growth-regulated signal transduction by the MAP kinases and RSKs. Cancer Cells 3:445–449.

    PubMed  CAS  Google Scholar 

  13. Nishida E, Gotoh Y. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131.

    Article  PubMed  CAS  Google Scholar 

  14. Thoburn J, Frost JA, Thorburn A. 1994. Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J Cell Biol 126:1565–1572.

    Article  Google Scholar 

  15. Post GR, Goldstein D, Thuerauf DJ, Glembotski CC, Brown JH. 1996. Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 271:8452–8457.

    Article  PubMed  CAS  Google Scholar 

  16. Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH. 1996. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res 78:954–961.

    Article  PubMed  CAS  Google Scholar 

  17. Sadoshima J, Izumo S. 1993. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692.

    PubMed  CAS  Google Scholar 

  18. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I.Tamemoto H, Kadowaki T, Nagai R, Yazaki Y. 1993. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268:12069–12076.

    PubMed  CAS  Google Scholar 

  19. Yamazaki T, Komuro I, Kudoh S, et al. 1995. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 96:438–446.

    Article  PubMed  CAS  Google Scholar 

  20. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J. 1992. Raf-1 activates MAP kinase-kinase. Nature 358:417–421.

    Article  PubMed  CAS  Google Scholar 

  21. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W, Kadowaki T, Yazaki Y. 1999. Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res 84:458–466.

    Article  PubMed  CAS  Google Scholar 

  22. Ip YT, Davis RJ. 1998. Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 10:205–219.

    Article  PubMed  CAS  Google Scholar 

  23. Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. 1996. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 10:631–636.

    PubMed  CAS  Google Scholar 

  24. Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y. 1997. Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80:139–146.

    Article  PubMed  CAS  Google Scholar 

  25. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y 1997. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. 1998. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 273:5423–5426.

    Article  PubMed  CAS  Google Scholar 

  27. Nemoto S, Sheng Z, Lin A. 1998. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 18:3518–3526.

    PubMed  CAS  Google Scholar 

  28. New L, Han J. 1998. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc Med 8:220–228.

    Article  PubMed  CAS  Google Scholar 

  29. Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko W, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL. 1998. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391.

    Article  PubMed  CAS  Google Scholar 

  30. Clerk A, Fuller SJ, Michael A, Sugden PH. 1998. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused art hearts by oxidative and other stresses. J Biol Chem 273:7228–7234.

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR. 1998. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168.

    Article  PubMed  CAS  Google Scholar 

  32. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. 1996. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta).J Biol Chem 271:17920–17926.

    Article  PubMed  CAS  Google Scholar 

  33. Erikson RL. 1991. Structure, expression, and regulation of protein kinases involved in the phosphorylation of ribosomal protein S6. J Biol Chem 266:6007–6010.

    PubMed  CAS  Google Scholar 

  34. Sadoshima J, Izumo S. 1995. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin H-induced cardiac hypertrophy. Circ Res 77:1040–1052.

    Article  PubMed  CAS  Google Scholar 

  35. Hammond GL, Wieben E, Marken CL. 1979. Molecular signals for initiating protein synthesis in organ hypertrophy. Proc Natl Acad Sci U S A 76:2455–2459.

    Article  PubMed  CAS  Google Scholar 

  36. Baker KM, Booz GW, Dostal DE. 1992. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54:227–241.

    Article  PubMed  CAS  Google Scholar 

  37. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920.

    Article  PubMed  CAS  Google Scholar 

  38. Linz W, Scholkens BA, Ganten D. 1989. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens 11:1325–1350.

    Article  CAS  Google Scholar 

  39. Baker KM, Chernin MI, Wixson SK, Aceto JE 1990. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259:H324–H332.

    PubMed  CAS  Google Scholar 

  40. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423.

    Article  PubMed  CAS  Google Scholar 

  41. Katoh Y, Komuro I, Shibasaki Y, Yamaguchi H, Yazaki Y. 1989. Angiotensin II induces hypertrophy and oncogene expression in cultured rat heart myocytes. Circulation 80:II–450.

    Google Scholar 

  42. Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, Kijima K, Matsubara H, Sugaya T, Murakami K, Yazaki Y 1998. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 97:1952–1959.

    Article  PubMed  CAS  Google Scholar 

  43. Harada K, Komuro I, Zou Y, Kudoh S, Kijima K, Matsubara H, Sugaya T, Murakami K, Yazaki Y. 1998. Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type la knockout mice. Circ Res 82:779–785.

    Article  PubMed  CAS  Google Scholar 

  44. Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N, Murakami K, Kadowaki T, Yazaki Y. 1998. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type la receptor knockout mice. J Biol Chem 273:24037–24043.

    Article  PubMed  CAS  Google Scholar 

  45. Sadoshima J, Izumo S. 1996. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 15:775–787.

    PubMed  CAS  Google Scholar 

  46. Zou Y, Komuro I.Yamazaki T, Kudoh S, Aikawa R, Zhu W, Shiojima I, Hiroi Y, Tobe K, Kadowaki T,Yazaki Y. 1998. Cell type-specific angiotensin II-evoked signal transduction pathways: critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts. Circ Res 82:337–345.

    Article  PubMed  CAS  Google Scholar 

  47. Zou Y, Komuro I,Yamazaki T, Aikawa R, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, Yazaki Y. 1996. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem 271:33592–33597.

    Article  PubMed  CAS  Google Scholar 

  48. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Murumo F, Hiroe M. 1993. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92:398–403.

    Article  PubMed  CAS  Google Scholar 

  49. Harada M, Itoh H, Nakagawa O, Ogawa Y, Miyamoto Y, Kuwahara K, Ogawa E, Igaki T.Yamashita J, Masuda I.Yoshimasa T, Tanaka I, Saito Y, Nakao K. 1997. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation 96:3737–3744.

    Article  PubMed  CAS  Google Scholar 

  50. Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. 1996. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384:353–355.

    Article  PubMed  CAS  Google Scholar 

  51. Akhter SA, Luttreel LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. 1998. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 28:574–577.

    Article  Google Scholar 

  52. Morris CE. 1990. Mechanosensitive ion channels. J Membr Biol 113:93–107.

    Article  PubMed  CAS  Google Scholar 

  53. Bustamante JO, Ruknudin A, Sachs E 1991. Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 17:S110–S113.

    Article  PubMed  Google Scholar 

  54. Sigurdson W, Ruknudin A, Sachs F. 1992. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262:H1110–1115.

    PubMed  CAS  Google Scholar 

  55. Yamazaki T, Komuro I, Kudoh S, Zou Y, Nagai R, Aikawa R, Uozumi H, Yazaki Y. 1998. Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 82:430–437.

    Article  PubMed  CAS  Google Scholar 

  56. Komuro I, Katoh Y, Hoh E, Takaku F, Yazaki Y. 1991. Mechanisms of cardiac hypertrophy and injury—possible role of protein kinase C activation. Jpn Circ J 55:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  57. Juliano RL, Haskill S. 1993. Signal transduction from the extracellular matrix. J Cell Biol 120:577–585.

    Article  PubMed  CAS  Google Scholar 

  58. Juliano RL, Haskill S. 1993. Signal transduction from the extracellular matrix. J Cell Biol 120:577–585.

    Article  PubMed  CAS  Google Scholar 

  59. Hynes RO. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.

    Article  PubMed  CAS  Google Scholar 

  60. Hamasaki K, Mimura T, Furuya H, Morino N, Yamazaki T, Komuro I, Yazaki y, Nojima Y. 1995. Stretching mesangial cells stimulates tyrosine phosphorylation of focal adhesion kinase pp125FAK. Biochem Biophys Res Common 212:544–549.

    Article  CAS  Google Scholar 

  61. Mackay DJ, Hall A. 1998. Rho GTPases. J Biol Chem 273:20685–20688.

    Article  PubMed  CAS  Google Scholar 

  62. Thorburn J, Xu S, Thorburn A. 1997. MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J 16:1888–1900.

    Article  PubMed  CAS  Google Scholar 

  63. Sah VP, Hoshijima M, Chien KR, Brown JH. 1996. Rho is required for Galphaq and alphal-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem 271:31185–31190.

    Article  PubMed  CAS  Google Scholar 

  64. Aoki H, Izumo S, Sadoshima J. 1998. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res 82:666–676.

    Article  PubMed  CAS  Google Scholar 

  65. Brewster JL, deValoir T, Dwyer ND, Winter E, Gustin MC. 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.

    Article  PubMed  CAS  Google Scholar 

  66. Schwartz MA, Lechene C, Ingber DE. 1991. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc Nad Acad Sci USA 88:7849–7853.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komuro, I. (2000). Molecular Mechanism of Mechanical Stress-Induced Cardiac Hypertrophy. In: Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Hypertrophied Heart. Progress in Experimental Cardiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4423-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4423-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6991-2

  • Online ISBN: 978-1-4615-4423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics