Skip to main content

Hyperglycemia and Diabetes — Induced Vascular Dysfunction: Role of Oxidative Stress

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

Abstract

There is substantial indirect evidence that oxidative stress occurs during the course of diabetes mellitus. This is based upon reports of elevation in lipid peroxides (i.e., malondialdehyde) in plasma of experimental diabetic rodents (1–3) and in plasma of human type I and type II diabetes mellitus (2,4-7). More recently, F2-isoprostanes, nonenzymatic peroxidation products, were shown to be increased in plasma of diabetic patients (8). In addition to elevated concentrations of lipid peroxides, oxidation of LDL, increased formation of glycated proteins, and elevated plasma concentrations of ceruloplasmin (9,10) have supported a role for increased oxidative stress in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matkovics B, Varga SI, Szabó L, Witas H. The effect of diabetes on the activities of the peroxide metabolism enzymes. Horm Metab Res. 1982;14:77.

    Article  PubMed  CAS  Google Scholar 

  2. Dohi T, Kawamura K, Morita K, Okamoto H, Tsujimoto A. Alterations of the plasma selenium concentrations and the activities of tissue peroxide metabolism enzymes in streptozotocin-induced diabetic rats. Horm Metab Res. 1988;20:671.

    Article  PubMed  CAS  Google Scholar 

  3. Higuchi Y. Lipid peroxides and (-tocopherol in rat streptozotocin-induced diabetes mellitus. Acta Med Okayama. 1982;3:165.

    Google Scholar 

  4. Sato Y, Hotta N, Sakamoto N, Matsuoka S, Ohishi N, Yagi K. Lipid peroxide level in plasma of diabetic patients. Biochem Med. 1979;21:104.

    Article  PubMed  CAS  Google Scholar 

  5. Gallou G, Ruelland A, Legras B, Maugendre D, Allannic H, Cloarec L. Plasma malondialdehyde in type 1 and type 2 diabetic patients. Clin Chim Acta. 1993;214:227.

    Article  PubMed  CAS  Google Scholar 

  6. Gallou G, Ruelland A, Campion L, Maugendre D, Le Moullec N, Legras B, Allannic H, Cloarec L. Increase in thiobarbituric acid-reactive substances and vascular complications in type 2 diabetes mellitus. Diabete & Metabolisme (Paris). 1994;20:258.

    CAS  Google Scholar 

  7. Griesmacher A, Kindhauser M, Andert SE, Schreiner W, Toma C, Knoebl P, Pietschmann P, Prager R, Schnack C, Schernthaner G, Mueller MM. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am J Med. 1995;98:469.

    Article  PubMed  CAS  Google Scholar 

  8. Gopaul NK, Änggård, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8-epi-PGF2 levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 1995;368:225.

    Article  PubMed  CAS  Google Scholar 

  9. Cunningham J, Leffell M, Mearkle P, Harmatz P. Elevated plasma ceruloplasmin in insulindependent diabetes mellitus: evidence for increased oxidative stress as a variable complication. Metabolism. 1995;44:996.

    Article  PubMed  CAS  Google Scholar 

  10. MacRury SM, Gordon D, Wilson R, Bradley H, Gemmell CG, Paterson JR, Rumley AG, MacCuish AC. A comparison of different methods of assessing free radical activity in type 2 diabetes and peripheral vascular disease. Diab Med. 1992;10:331.

    Article  Google Scholar 

  11. Tribe RM, Poston L. Oxidative stress and lipids in diabetes: a role in endothelium vasodilator dysfunction? Vasc Med. 1996;1:195.

    PubMed  CAS  Google Scholar 

  12. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19:257.

    Article  PubMed  CAS  Google Scholar 

  13. Kakkar R, Mantha SV, Kalra J, Prasad K. Time course study of oxidative stress in aorta and heart of diabetic rat. Clin Sci. 1997;91:441.

    Google Scholar 

  14. Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radical Biol Med. 1991;10:339.

    Article  CAS  Google Scholar 

  15. Baynes JW: Role of oxidative stress in development of complications of diabetes. Diabetes. 1991; 40:405.

    Article  PubMed  CAS  Google Scholar 

  16. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Van Den Enden M, Kilo C, Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993;42:801.

    Article  PubMed  CAS  Google Scholar 

  17. Chappey O, Dosquet C, Wautier M-P, Wautier J-L. Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest. 1997;27:97.

    Article  PubMed  CAS  Google Scholar 

  18. Pieper GM, Gross GJ. “Endothelial Dysfunction in Diabetes” In Cardiovascular Significance of Endothelium-Derived Vasoactive Factors, GM Rubanyi, ed. Mount Kisco, NY: Futura Publishing Co., Inc., 1991:223.

    Google Scholar 

  19. Kamata N, Miyata N, Abiru T, Kasuya Y. Functional changes in vascular smooth muscle and endothelium of arteries during diabetes mellitus. Life Sci. 1992;50:1379.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation. 1993;87(suppl. V):V-67.

    Google Scholar 

  21. Poston L, Taylor PD. Endothelium-mediated vascular function in insulin-dependent diabetes mellitus. Clin Sci. 1995;88:245.

    PubMed  CAS  Google Scholar 

  22. Sobrevia L, Mann GE. Dysfunction of the endothelilal nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol. 1997;82:423.

    PubMed  CAS  Google Scholar 

  23. Pieper GM. Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction. Hypertension. 1998;31:1047.

    Article  PubMed  CAS  Google Scholar 

  24. Langenstroer P, Pieper GM. Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals. Am J Physiol. 1992;263 (Heart Circ Physiol 32).H257

    PubMed  CAS  Google Scholar 

  25. Ohishi K, Carmines PK. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus. J Am Soc Nephrol. 1995;5:1559.

    PubMed  CAS  Google Scholar 

  26. Hattori Y, Kawasakie H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol. 1991;261(Heart Circ Physiol 30):H1086.

    PubMed  CAS  Google Scholar 

  27. Pieper GM, Mei DA, Langenstroer P, O’Rourke ST. Bioassay of endothelium-derived relaxing factor in diabetic rat aorta. Am J Physiol. 1992:263 (Heart Circ Physiol 32):H676.

    PubMed  CAS  Google Scholar 

  28. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol. 1992;263 (Heart Circ Physiol 32):H321.

    PubMed  CAS  Google Scholar 

  29. Diederich D, Skopec J, Diederich A, Dai F-X. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol. 1994;266 (Heart Circ Physiol 35):H1153.

    Google Scholar 

  30. Mayhan WG. Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus. Brain Res. 1997;760:204.

    Article  PubMed  CAS  Google Scholar 

  31. Rösen P, Ballhausen T, Bloch W, Addicks K. Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: influence of tocopherol as antioxidant. Diabetologia. 1995;38:1157.

    Article  PubMed  Google Scholar 

  32. Kamata K, Kobayashi T. Changes in Superoxide dismutase mRNA expression by streptozotocin-induced diabetes. Br J Pharmacol. 1996;119:583.

    Article  PubMed  CAS  Google Scholar 

  33. Pieper GM, Moore-Hilton G, Roza AM. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 1996;58:147.

    Google Scholar 

  34. Dai F-X, Diederich A, Skopec J, Diederich D. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of Prostaglandin endoperoxides and free radicals. J Am Soc Nephrol. 1993;4:1327.

    PubMed  CAS  Google Scholar 

  35. Heygate KM, Lawrence IG, Bennett MA, Thurston H. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats. Br J Pharmacol. 1995:116:3251.

    Article  PubMed  CAS  Google Scholar 

  36. Matsunaga T, Okumura K, Ishizaka H, Tsunoda R, Tayama S, Tabuchi T, Yasue H. Impairment of coronary blood flow regulation by endothelium-derived nitric oxide in dogs with alloxaninduced diabetes. J Cardiovasc Pharmacol. 1996;28:60.

    Article  PubMed  CAS  Google Scholar 

  37. Pieper GM, Langenstroer P, Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res. 1997;34:145.

    Article  PubMed  CAS  Google Scholar 

  38. Ammar RF Jr, Gutterman DD, Dellsperger KC. Topically applied Superoxide dismutase and catalase normalize coronary arteriolar responses to acetylcholine in diabetes mellitus in vivo. Circulation. 1994;90:1–57 (abstract).

    Article  Google Scholar 

  39. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, Noh HK, Seong BW, Ko HJ, Chun KW. Possible Superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Thera. 1993;266:992.

    CAS  Google Scholar 

  40. Pieper GM. Oxidative stress in diabetic blood vessels. FASEB J 1995;9:A891 (abstract).

    Google Scholar 

  41. Ohkuwa T, Sato Y, Naoi M. Hydroxyl radical formation in diabetic rats induced by strepotozotocin. Life Sci. 1995;56:1789.

    Article  PubMed  CAS  Google Scholar 

  42. Ghiselli A, Laurenti O, De Mattia G, Maiani G, Ferro-Luzzi A. Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients. Free Radical Biol Med. 1992;13:621.

    Article  CAS  Google Scholar 

  43. Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived relaxing factor. Nature. 1986;320:454.

    Article  PubMed  CAS  Google Scholar 

  44. Nitenberg A, Paycha F, Ledoux S, Sachs R, Attali J-R, Valensi P. Coronary artery responses to physiological stimluli are improved by deferoxamine but not by L-arginine in non-insulindependent diabetic patients with angiographically normal coronary arteries and no other risk factors. Circulation. 1998;97:736.

    Article  PubMed  CAS  Google Scholar 

  45. Mooradian AD. The antioxidant potential of cerebral microvessels in experimental diabetes mellitus. Brain Res. 1995;671:164.

    Article  PubMed  CAS  Google Scholar 

  46. Crouch R, Kimsey G, Priest DG, Sarda A, Buse MG: Effect of streptozotocin on erythrocyte and retinal Superoxide dismutase. Diabetelogia. 1978; 15:53.

    Article  CAS  Google Scholar 

  47. Pieper GM, Jordan M, Dondlinger LA, Adams MB, Roza AM. Peroxidative stress in diabetic blood vessels: reversal by pancreatic islet transplantation. Diabetes. 1995;44:884.

    Article  PubMed  CAS  Google Scholar 

  48. Armstrong D, Al-Awadi F. Lipid peroxidation and retinopathy in streptozotocin-induced diabetes. Free Radical Biol Med. 1991;11:433.

    Article  CAS  Google Scholar 

  49. Low PA, Nickander KK. Oxygen free radical effects in sciatic nerve in experimental diabetes. Diabetes. 1991;40:873.

    Article  PubMed  CAS  Google Scholar 

  50. Tatsuki R, Satoh K, Yamamoto A, Hoshi K, Ichihara K. Lipid peroxidation in the pancreas and other organs in streptozotocin diabetic rats. Jap J Pharmacol. 1997;75:267.

    Article  PubMed  CAS  Google Scholar 

  51. Tagami S, Kondo T, Yoshida K, Hirokawa J, Ohtsuka Y, Kawakami Y. Effect of insulin on impaired antioxidant activities in aortic endothelial cells from diabetic rabbits. Metabolism. 1992;41:1053.

    Article  PubMed  CAS  Google Scholar 

  52. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest. 1991;87:432.

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez-Mafias L, Arribas S, Girón C, Villamor J, Sánchez-Ferrer CF, Marín J. Interference of glycosylated human hemoglobin with endothelium-dependent responses. Circulation. 1993;88[part l]:2111.

    Article  Google Scholar 

  54. Angulo J, Sánchez-Ferrer CF, Peiró C, Marin J, Rodriguez-Mañas L. Impairment of endothelium-dependent relaxation by increasing percentages of glycosylated human hemoglobin: possible mechanisms involved. Hypertension. 1996;28:583.

    Article  PubMed  CAS  Google Scholar 

  55. Oltman CL, Gutterman DD, Scott EC, Bocker JM, Dellsperger KC. Effects of glycosylated hemoglobin on vascular responses in vitro. Cardiovasc Res. 1997;34:179.

    Article  PubMed  CAS  Google Scholar 

  56. Ellis EA, Grant MB, Murray FT, Wachowski MB, Guberski DL, Kubilis PS, Lutty GA. Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Radical Biol Med. 1998;24:111.

    Article  CAS  Google Scholar 

  57. Mohazzab-H KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of Superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994;266 (Heart Circ Physiol 35):H2568.

    CAS  Google Scholar 

  58. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OTG. Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol. 1996;271 (Heart Circ Physiol 40):H1626.

    PubMed  CAS  Google Scholar 

  59. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. P22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chemi. 1996;271:23317.

    Article  CAS  Google Scholar 

  60. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA. 1997;94:14483.

    Article  PubMed  CAS  Google Scholar 

  61. Quian M, Brunk UT, Pieper GM, Eaton JW. Diabetic peripheral neuropathy: a possible involvement of iron bound to glycated basement membrane proteins. Ped Res. 1998;43:83A (abstact).

    Article  Google Scholar 

  62. Heinzel B, John M, Klatt P, Böhme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992;281:627.

    PubMed  CAS  Google Scholar 

  63. Rösen P, Ballhausen T, Stockklauser K. Impairment of endothelium dependent relaxation in the diabetic rat heart: mechanisms and implications. Diabetes Res Clin Pract. 1996;31(suppl.):S143.

    Article  PubMed  Google Scholar 

  64. Pieper GM, Dondlinger LA. Plasma and vascular tissue arginine are decreased in diabetes: acute arginine supplementation restores endothelium-dependent relaxation by augmenting cGMP production. J Pharmacol Exp Thera. 1997;283:684.

    CAS  Google Scholar 

  65. Hamon CG, Cutler P, Blair JA. Tetrahydrobiopterin metabolism in the streptozotocin induced diabetic state in rats. Clin Chim Acta. 1989;181:249.

    Article  PubMed  CAS  Google Scholar 

  66. Öztürk Y, Aydin S, Altan VM, Yildizoglu-Ari N, Özçelikay AT. Effect of short and long term streptozotocin diabetes on smooth muscle calmodulin levels in the rat. Cell Calcium. 1994;16:81.

    Article  PubMed  Google Scholar 

  67. Pieper GM. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol. 1997;29:8.

    Article  PubMed  CAS  Google Scholar 

  68. Pieper GM, Peltier BA. Amelioration by L-arginine of a dysfunctional arginine/nitric oxide pathway in diabetic endothelium. J Cardiovasc Pharmacol. 1995;25:397.

    Article  PubMed  CAS  Google Scholar 

  69. Pieper GM, Jordan M, Adams MB, Roza AM. Syngeneic pancreatic islet transplantation reverses endothelial dysfunction in experimental diabetes. Diabetes. 1995;44:1106.

    Article  PubMed  CAS  Google Scholar 

  70. Pieper GM, Siebeneich W, Moore-Hilton G, Roza AM. Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diabetic BB rat. Diabetologia. 1997;40:910.

    Article  PubMed  CAS  Google Scholar 

  71. Pieper GM, Siebeneich W, Dondlinger LA. Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. Eur J Pharmacol. 1996;317:317.

    Article  PubMed  CAS  Google Scholar 

  72. Böger RH, Bode-Böger SM, Brandes RP, Phivthong-ngam L, Böhme M, Nafe R, Mügge A, Frölich JC. Dietary L-arginine redues the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation. 1997;96:1282.

    Article  PubMed  Google Scholar 

  73. Taylor PD, Poston L. The effect of hyperglycaemia on function of rat isolated mesenteric resistance artery. Br J Pharmacol. 1994;113:801.

    Article  PubMed  CAS  Google Scholar 

  74. Félétou M, Rasetti C, Duhault J. Magnesium modulates endothelial dysfunction produced by elevated glucose incubation. J Cardiovasc Pharmacol. 1994;24:470.

    Article  PubMed  Google Scholar 

  75. Dorigo P, Fraccarollo D, Santostasi G, Maragno I. Impairment of endothelium-dependent but not endothelium-independent dilatation in guinea pig aorta rings incubated in the presence of elevated glucose. Br J Pharmacol. 1997;121:972.

    Article  PubMed  CAS  Google Scholar 

  76. Bohlen HG, Lash JM. Topical hyperglycemia rapidly suppresses EDRF-mediated vasodilation of normal rat arterioles. Am J Physiol. 1993, 265(Heart Circ Physiol 34):H219.

    PubMed  CAS  Google Scholar 

  77. Mayhan WG, Patel KP. Acute effects of glucose on reactivity of cerebral microcirculation: role of activation of protein kinase C. Am J Physiol. 1995;269(Heart Circ Physiol 38):H1297.

    PubMed  CAS  Google Scholar 

  78. Houben AJHM, Schaper NC, DeHaan HA, Huvers FC, Slaaf DW, DeLeeuw PW, Nieuwenhuijzen-Kruseman AC. Local 24-h hyperglycemia does not affect endotheliumdependent or-independent vasoreactivity in humans. Am J Physiol. 1996;270 (Heart Circ Physiol 39):H2014.

    PubMed  CAS  Google Scholar 

  79. Akbari C, Saouaf R, Barnhill D, Newman P, Logerfo F. Endothelium-dependent vasodilatation is impaired during acute hyperglycemia. Diabetes. 1997;46 (supp. 1): 114A (abstract).

    Google Scholar 

  80. Lee T-S, Saltsman KA, Ohashi H, King GL. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci USA. 1989;86:5141.

    Article  PubMed  CAS  Google Scholar 

  81. Weisbrod RM, Brown ML, Cohen RA. Effect of elevated glucose on cyclic GMP and eicosanoids produced by porcine aortic endothelium. Arterterioscler Thromb. 1993;13:915.

    Article  CAS  Google Scholar 

  82. Pieper GM, Dondlinger L. Glucose elevations alter bradykinin-stimulated intracellular calcium accumulation in cultured endothelial cells. Cardiovasc Res. 1997;34:169.

    Article  PubMed  CAS  Google Scholar 

  83. Magill SB, Danaberg J. “Effects of hyperglycemia on vascular endothelium nitric oxide metabolism” In Contemporary Endocrinology: Endocrinology of the Vasculature, JR Sowers, ed,. Totowa, NJ: Humana Press Inc.; 1996:145.

    Google Scholar 

  84. Salameh A, Dhein S. Influence of chronic exposure to high concentrations of D-glucose and long-term ®-blocker treatment on intracellular calcium concentrations of porcine aortic endothelial cells. Diabetes. 1998;47:407.

    Article  PubMed  CAS  Google Scholar 

  85. Pieper GM, Dondlinger LA. The antioxidant, Pyrrolidine dithiocarbamate, prevents defective bradykinin-stimulated calcium accumulation and nitric oxide activity following exposure of endothelial cells to elevated glucose concentration. Diabetologia. 1998;41:806.

    Article  PubMed  CAS  Google Scholar 

  86. Kimura C, Oike M, Kashiwagi S, Ito Y. Effects of glucose overload on histamine H2 receptormediated Ca2+ mobilization in bovine cerebral endothelial cells. Diabetes. 1998;47:104.

    Article  PubMed  CAS  Google Scholar 

  87. Mazière C, Auclari M, Rose-Robert F, Leflon P, Mezière JC. Glucose-enriched medium enhances cell-mediated low density lipoprotein peroxidation. Febs Lett. 1995;363:277.

    Article  PubMed  Google Scholar 

  88. Graier WF, Simecek S, Hoebel BG, Wascher TC, Dittrich P, Kostner GM. Antioxidants prevent high D-glucose-enhanced endothelial Ca2+/cGMP response by scavenging Superoxide anions. Eur J Pharmacol. 1997;322:113.

    Article  PubMed  CAS  Google Scholar 

  89. Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF. High glucose increases nitric oxide synthase expression and Superoxide anion generation in human aortic endothelial cells. Circulation. 1997;96:25.

    Article  PubMed  CAS  Google Scholar 

  90. Pellligrino DA, Koenig HM, Wang Q, Albrecht RF. Protein kinase C suppresses receptormediated pial arteriolar relaxation in the diabetic rat. NeuroReport. 1994;5:417.

    Article  Google Scholar 

  91. Ohara Y, Peterson TE, Zheng B, Kuo JF, Harrison DG. Lysophosphatidylcholine increases vascular Superoxide anion production via protein kinase C activation. Arterioscler Thromb. 1994;14:1007.

    Article  PubMed  CAS  Google Scholar 

  92. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22.

    Article  PubMed  CAS  Google Scholar 

  93. Timimi FK, Ting HH, Haley EA, Roddy M-A, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1998;31:552.

    Article  PubMed  CAS  Google Scholar 

  94. Keegan A, Walbank H, Cotter MA, Cameron NE. Chronic vitamin E treatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia. 1995;38:1475.

    Article  PubMed  CAS  Google Scholar 

  95. Karasu Ç, Ozansoy G, Bozkurt O, Erdogan D, Ömeroglu S. Isoprenaline-induced endotheliumdependent and-independent relaxations of aorta in long-term STZ-diabetic rats: reversal effect of dietary vitamin E. Gen Pharmacol. 1997;29:561.

    Article  PubMed  CAS  Google Scholar 

  96. Archibald V, Cotter MA, Keegan A, Cameron NE. Contraction and relaxation of aortas from diabetic rats: effects of chronic anti-oxidant and aminoguanidine treatments. Naunyn-Schmiedeberg’s Arch Pharmacol. 1996;353:584.

    CAS  Google Scholar 

  97. Pieper GM, Siebeneich W: Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction. J Cardiovasc Pharmacol. 1998; 41:101.

    Article  Google Scholar 

  98. Pieper GM, Siebeneich W, Roza AM, Jordan M, Adams MB. Chronic treatment in vivo with dimethylthiourea, a hydroxyl radical scavenger, prevents diabetes-induced endothelial dysfunction. J Cardiovasc Pharmacol. 1996;28:741.

    Article  PubMed  CAS  Google Scholar 

  99. Mayhan WG, Patel KK. Treatment with dimethylthiourea prevents impaired dilatation of the basilar artery during diabetes mellitus. Am J Physiol. 1998;214(Heart Circ Physiol. 43):H1895.

    Google Scholar 

  100. Pieper GM, Siebeneich W. Diabetes-induce endothelial dysfunction is prevented by long-term treatment with the modified iron chelator, hydroxyethyl starch conjugated-deferoxamine. J Cardiovasc Pharmacol. 1997;30:734.

    Article  PubMed  CAS  Google Scholar 

  101. Karasu Ç, Ozansoy G, Bozhurt D, Ömeroglu S. Antioxidant and triglyceride-lowering effect of vitamin E associated with the prevention of abnormalities in the reactivity and morphology of aorta from streptozotocin-diabetic rats. Metabolism. 1997;46:872.

    Article  PubMed  CAS  Google Scholar 

  102. Palmer AM, Gopaul N, Dhir S, Thomas CR, Poston L, Tribe RM. Endothelial dysfunction in streptozotocin-diabetic rats is not reversed by dietary probucol or simvastatin supplementation. Diabetologia. 1998;41:157.

    Article  PubMed  CAS  Google Scholar 

  103. Palmer AM, Thomas CR, Gopaul N, Dhir S, Änggård EE, Poston L, Tribe RM. Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of the streptozotocin-diabetic rat. Diabetologia. 1998;41:148.

    Article  PubMed  CAS  Google Scholar 

  104. Bertuglia S, Malandrino S, Colantuoni A. Effects of the natural flavonoid delphinidin on diabetic microangiopathy. Arzn-Forschung/Drug Res. 1995;45:481.

    CAS  Google Scholar 

  105. Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia. 1994;37:449.

    Article  PubMed  CAS  Google Scholar 

  106. Cameron NE, Cotter MA. Reversal of peripheral nerve conduction and perfusion deficits by the free radical scavenger, BM15.0639, in diabetic rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 1995;352:685.

    CAS  Google Scholar 

  107. Cotter MA, Love A, Watt MJ, Cameron NE, Dines KC. Effects of natural free radical scavengers on peripheral nerve and neurovascular function in diabetic rats. Diabetologia. 1995;38:1285.

    Article  PubMed  CAS  Google Scholar 

  108. Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest. 1995;96:1159.

    Article  PubMed  CAS  Google Scholar 

  109. Pieper GM, Jordan M, Roza AM: Chronic treatment with the 21-aminosteroid U74389F an inhibitor of lipid peroxidation, does not prevent diabetic endothelial dysfunction. Cardiovasc Drugs Therapy. 1997; 11:435.

    Article  CAS  Google Scholar 

  110. Tilton RG, Chang K, Hasan KS, Smith SR, Petrash JM, Misko TP, Moore WM, Currie WG, Corbett JA, McDaniel ML, Williamson JR. Prevention of diabetic vascular dyfsunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993;42:221.

    Article  PubMed  CAS  Google Scholar 

  111. Kumari K, Umar S, Bansal V, Sahib MK. Inhibition of diabetes-associated complications by nucleophilic compounds. Diabetes. 1991;1079.

    Google Scholar 

  112. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetesinduced arterial wall protein cross-linking. Science. 1986;232:1629.

    Article  PubMed  CAS  Google Scholar 

  113. Picard S, Parthasrathy S, Fruebis J, Witztum JL. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by the macrophage scavenger receptor. Proc Natl Acad Sci USA. 1992;89:6876.

    Article  PubMed  CAS  Google Scholar 

  114. Philis-Tsimikas A, Parthasarathy S, Picard S, Palinski W, Witztum J: Aminoguanidine has both pro-oxidant and antioxidant activity toward LDL. Arterioscler Thromb Vasc Biol. 1994; 15:367.

    Article  Google Scholar 

  115. Cameron NE, Cotter MA. Impaired contraction and relaxation in aorta from streptozotocindiabetic rats: role of polyol pathway. Diabetelogia. 1992;35:1011.

    Article  CAS  Google Scholar 

  116. Tesfamariam B, Palacino JJ, Weisbrod RM, Cohen RA. Aldose reductase inhibition restores endothelial cell function in diabetic rabbit aorta. J Cardiovasc Pharmacol. 1993;21:205.

    Article  PubMed  CAS  Google Scholar 

  117. Otter DJ, Chess-Williams R: The effects of aldose reductase inhibition with ponalrestat on changes in vascular function in streptozotocin diabetic rats. Br J Pharmacol. 1994; 113:576.

    Article  PubMed  CAS  Google Scholar 

  118. Jian ZY, Zhou Q-L, Eaton JW, Koppenol WH, Hunt JV, Wolff SP. Spirohydantoin inhibitors of aldose reductase inhibit iron-and copper-catalyzed ascorbate oxidation in vitro. Biochem Pharmacol. 1991;42:1273.

    Article  Google Scholar 

  119. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988;256:205.

    PubMed  CAS  Google Scholar 

  120. Ceriello A, Giugliano D, Quatraro A, Donzella C, Cipalo G, Lefebvre PJ. Vitamin E reduction of protein glycosylation in diabetes. New prospect for prevention of diabetic complications. Diabetes Care. 1991;14:68.

    Article  PubMed  CAS  Google Scholar 

  121. Davies SJ, Gould BJ, Yudkin JS. Effect of vitamin C on glycosylation of proteins. Diabetes. 1992;41:167.

    Article  Google Scholar 

  122. Shoff SM, Mares-Perlman JA, Cruickshanks KJ, Klein R, Klein BEK, Ritter LL. Glycosylated hemoglobin concentrations and vitamin E, vitamin C, and ®-carotene intake in diabetic and nondiabetic older aldults. Am J Clin Nutr. 1993;58:412.

    PubMed  CAS  Google Scholar 

  123. Soulis T, Cooper ME, Sastra S, Thallas V, Panagiotopoulos S, Bjerrum OJ, Jerums G. Relative contributions of advanced glycation and nitric oxide synthase inhibition to aminoguanidinemediated renoprotection in diabetic rats. Diabetologia. 1997;40:1141.

    Article  PubMed  CAS  Google Scholar 

  124. Richardson M, Hadcock SJ, DeReske M, Cybulsky MI. Increase expression in vivo of VCAM-1 and E-selectin by the aortic endothelium of normolipemic and hyperlipemic diabetic rabbits. Arterioscler Thromb. 1994;14:760.

    Article  PubMed  CAS  Google Scholar 

  125. McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol. 1995;147:642.

    PubMed  CAS  Google Scholar 

  126. Schmidt AM, Crandall J, Hori O, Cao R, Lakatta E. Elevated plasma levels of vascular cell adhesion molecule-1 (VCAM-1) in diabetic patients with microalbuminuria: a marker of vascular dysfunction and progressive vascular disease. Br J Haematol. 1996;92:747.

    Article  PubMed  CAS  Google Scholar 

  127. Fasching P, Veitl M, Rohac M, Streli C, Schneider B, Waldhäusl W, Wagner OF. Elevated concentrations of circulating adhesion molecules and their association with microvascular complications in insulin-dependent diabetes mellitus. J Clin Invest. 1996;81:4313.

    CAS  Google Scholar 

  128. Jude EB, Abbott CA, Young MJ, Anderson SG, Douglas JT, Boulton AJM. The potential role of cell adhesion molecules in the pathogenesis of diabetic neuropathy. Diabetologia. 1998;41:330.

    Article  PubMed  CAS  Google Scholar 

  129. Baumgartner-Parzer SM, Wagner L, Pettermann M, Gessl A, Waldhäsl W. Modulation by high glucose of adhesion molecule expression in cultured endothelial cells. Diabetologia. 1995;38:1367.

    Article  PubMed  CAS  Google Scholar 

  130. Taki H, Kashiwagi A, Tanaka Y, Horiike K. Expression of intercellular adhesion molecules (ICAM-1) via an osmotic effect in human umbilical vein endothelial cells exposed to high glucose medium. Life Sci. 1996;58:1713.

    Article  PubMed  CAS  Google Scholar 

  131. Kim JA, Berliner JA, Natarajan RD, Nadler JL. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes. 1994;43:1103.

    Article  PubMed  CAS  Google Scholar 

  132. Weber C, Erl W, Pietsch A, Sröbel M, Ziegler-Heitbrock HWL, Weber PC. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-κB moblilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterioscler Thromb. 1994;14:1665.

    Article  PubMed  CAS  Google Scholar 

  133. Weber C, Erl W, Pietsch A, Weber PC. Aspirin inhibits nuclear factor-κB mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation. 1995;91:1914.

    Article  PubMed  CAS  Google Scholar 

  134. Ferrans C, Millan MT, Csizmadia V, Cooper JT, Brostjan C, Bach FH, Winkler H. Inhibition of NF-κB by Pyrrolidine dithiocarbamate blocks endothelial cell activation. Biochem Biophys Res Comm. 1995;214:212.

    Article  Google Scholar 

  135. Mauri N, Offerman Mk, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in vascular endothelial cells. J Clin Invest. 1993;92:1866.

    Article  Google Scholar 

  136. Gerritsen ME, Carley WW, Ranges GE, Shen C-P, Phan SA, Ligon CF, Perry CA. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol. 1995;147:278.

    PubMed  CAS  Google Scholar 

  137. Pieper GM, ul-Haq R. Activation of nuclear factor-κB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol. 1997;30:528.

    Article  PubMed  CAS  Google Scholar 

  138. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial recepter induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395.

    Article  PubMed  CAS  Google Scholar 

  139. Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, Luther T, Berentshtein E, Tritscher H, Müller M, Wahl P, Ziegler R, Nawroth PP. Advanced glycation end produt-induced activation of NF-KB is suppressed by (-lipoic acid in cultured endothelial cells. Diabetes. 1997;46:1481.

    Article  PubMed  CAS  Google Scholar 

  140. Mazière C, Auclair M, Djavaheri-Mergny M, Packer L, Mazière J-C. Oxidized low density lipoprotein induces activation of the transcription factor NF-κB in fibroblasts, endothelial and smooth muscle cells. Biochem Mol Biol Int. 1996;39:1201.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pieper, G.M. (2000). Hyperglycemia and Diabetes — Induced Vascular Dysfunction: Role of Oxidative Stress. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics