Skip to main content

The Role of Oxidative Stress in Hypertension

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

  • 414 Accesses

Abstract

In the past decade, substantial attention has been directed toward understanding how reactive oxygen species contribute to the pathophysiology of vascular disease. Increasing evidence suggests that increases in vascular production of oxygenderived radicals represent a common pathway whereby many pathological conditions can promote vascular disease and lesion formation. In particular, it has become clear that reactive oxygen species play a critical role in the pathology of hypertension. Likewise, many of the neurohumoral alterations that accompany hypertension accelerate vascular production of reactive oxygen species. In this review, we will discuss this evidence and examine the potential consequences of “oxidative stress” as it pertains to hypertension and its vascular consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lu D, Maiulik N, Moraru II, Kreutzer DL, Das DK. Molecular adaptation of vascular endothelial cells to oxidative stress. Am J Physiol. 1993;264:C715.

    PubMed  CAS  Google Scholar 

  2. Pagano PJ, Tornheim K, Cohen RA. Superoxide anion production by rabbit thoracic aorta: effect of endothlium-derived nitric oxide. Am J Physiol. 1993:265:H707.

    PubMed  CAS  Google Scholar 

  3. Panus PC, Radi R, Chumley PH, Lillard RH, Freeman BA. Detection of H2O2 release from vascular endothelial cells. Free Rad Biol Med. 1993;14:217.

    Article  PubMed  CAS  Google Scholar 

  4. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman B, Griendling K, Harrison D. Angiotensin II-mediated hypertension in the rat increases vascular Superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest. 1996;97:1916.

    Article  PubMed  CAS  Google Scholar 

  5. Friedl HP, Till GO, Ryan US, Ward PA. Mediator-induced activation of xanthine oxidase in endothelial cells. FASEB J. 1989;3:2512.

    PubMed  CAS  Google Scholar 

  6. Mohazzab KM, Wolin MS. Sites of Superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol. 1994;267:L815.

    PubMed  CAS  Google Scholar 

  7. Mohazzah KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of Superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994;266:H2568.

    Google Scholar 

  8. Griendling K, Ollerenshaw JD, Minieri CA, Alexander RW. Angiotensin II stimulated NADH activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141.

    Article  PubMed  CAS  Google Scholar 

  9. Watson F, Robinson J, Edwards SW. Protein kinase C-dependent and-independent activation of the NADPH oxidase of human neutrophils. J Biol Chem. 1991;266:7432

    PubMed  CAS  Google Scholar 

  10. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. P22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulated angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem. 1996;271:23317.

    Article  PubMed  CAS  Google Scholar 

  11. Fukui T, Lassegue B, Kai H, Alexander RW, Griendling KK. Cytochrome b558 a-subunit cloning and expression in rat aortic smooth muscle cells. Biochim Biophys Acta. 1995;1231:215.

    Article  PubMed  Google Scholar 

  12. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT. Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol. 1996;271:H1626.

    PubMed  CAS  Google Scholar 

  13. Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR. Cyclic strain induces and oxidative stress in endothelial cells. Am J Physiol. 1997;272:C421.

    PubMed  CAS  Google Scholar 

  14. Hishikawa K, Luscher TF. Pulsatile stretch stimulates Superoxide production in human aortic endothelial cells. Circulation. 1997;96:3610.

    Article  PubMed  CAS  Google Scholar 

  15. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn Superoxide dismutase in human aortic endothelial cells. Circ Res. 1996;79:32.

    Article  PubMed  CAS  Google Scholar 

  16. Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1993;90:2092.

    Article  Google Scholar 

  17. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a suerpoxde-producing NADH oxidase. Circ Res. 1998;82:1094.

    Article  PubMed  Google Scholar 

  18. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK. Tumor necrosis factor alpha activates a pssphox-based NADH oxidase in vascular smooth muscle. Biochem J. 1998;329:653.

    PubMed  Google Scholar 

  19. Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped flow technique, and pulse radiolysis. Chem Res Toxicol 1997;10:1285

    Article  PubMed  CAS  Google Scholar 

  20. Ohara Y, Peterson TE, Harrision DG. Hypercholesterolemia increases endothelial Superoxide anion production. J Clin Invest. 1993;91:2546.

    Article  PubMed  CAS  Google Scholar 

  21. Ting HH, Timimi FK, Boles K, Creager S, Ganz P, Creager MA. Vitamin C acutely improves endothelim-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. Circulation. 1995;92:1747.

    Google Scholar 

  22. Heitzer T, Just H, Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation. 1996;94:6.

    Article  PubMed  CAS  Google Scholar 

  23. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrision DG. Chronic treatment with polyethylene-glycolated Superoxide dismutase partially restores endothelimdependent vascular relaxation in cholesterol-fed rabbits. Circ Res. 1991;69:1293.

    Article  PubMed  CAS  Google Scholar 

  24. Nakazono I, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does Superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA. 1991;88:10045.

    Article  PubMed  CAS  Google Scholar 

  25. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers QT, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res. 1997:80:45.

    Article  PubMed  CAS  Google Scholar 

  26. Laursen JB, Rajagopalan S, Tarpey M, Freeman B, Harrison DG. A role of Superoxide in angiotensin II-but not catecholamine-induced hypertension. Circulation 1997;95:588.

    Article  PubMed  CAS  Google Scholar 

  27. Kwan CY, Beazley JS. Mechanisms of inhibition of alloxan of ATP-driven calcium transport by vascular smooth muscle microsomes. J Bioenerg Biomembr. 1988;20:517.

    Article  PubMed  CAS  Google Scholar 

  28. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidants stress in vivo in chroinc cigarette smokers. Circulation 1996;94:19.

    Article  PubMed  CAS  Google Scholar 

  29. Bachi A, Zuccato E, Baraldi M, Fanelli R, Chiabrando C. Measurement of urinary 8-epiprostaglandin F2-α, a novel index of lipid peroxidation in vivo, by immunoaffinity extraction/gas chromatography-mass spectrometry: Basal levels in smokers and nonsmokers. Free Rad Biol Med. 1996;20:619.

    Article  PubMed  CAS  Google Scholar 

  30. Chua BH, Chua CC, Diglio CA, Siu BB. Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta. 1993;1178:201.

    Article  PubMed  CAS  Google Scholar 

  31. Imai T, Hirata Y, Emori T, Yanagisawa M, Masaki T, Marumo F. Induction of endothelin-1 gene by angiotensin and Vasopressin in endothlial cells. Hypertension. 1992;19:753.

    Article  PubMed  CAS  Google Scholar 

  32. Rajagopalan S, Bech Laursen J, Borthayre A, Kurz S, Keiser J, Haleen S, Giaid A, Harrision DG. A role for endothelin-1 in angiotensin II mediated hypertension. Hypertension. 1997;30:29.

    Article  PubMed  CAS  Google Scholar 

  33. d’Uscio LV, Moreau P, Shaw S, Takase H, Barton M, Luscher TF. Effects of chronic ETA-receptor blockade in angiotensin II-induced hypertension. Hypertension. 1997;29:435.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Somers, M.J., Griendling, K.K., Harrison, D.G. (2000). The Role of Oxidative Stress in Hypertension. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics