Skip to main content

Incomplete Oxygen Extraction in Exercising Muscle

  • Chapter
Oxygen Transport to Tissue XXI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 471))

  • 362 Accesses

Abstract

With increasing motor stimulation or exercise intensity of skeletal muscle its O2 consumption and blood flow increase. As O2 extraction increases, O2 content and PO2 in muscle venous outflow decrease, but never reach zero (e.g. Mercker et al., 1949).In this report, the various factors that have been considered to contribute to this “apparent inefficiency” of O2 transfer will be analyzed in theory and on the basis of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cerretelli P, Marconi C, Pendergast D, Meyer M, Heisler N, and Piiper J (1984) Blood flow in exercising muscles by xenon clearance and by microsphere trapping. J Appl Physiol 65:24–30.

    Google Scholar 

  • Damon DH and Duling BR (1985) Evidence that capillary perfusion heterogeneity is not controlled in striated muscle. Am J Physiol 249 (Heart Circ Physiol 18):H386–H392.

    PubMed  CAS  Google Scholar 

  • Duling BR and Berne RM (1970) Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in the local regulation of blood flow. Circ Res 27:669–678.

    Article  PubMed  CAS  Google Scholar 

  • Duling BR and Damon DH (1987) An examination of the measurement of flow heterogeneity in striated muscle. Circ Res 60:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Ellis CG, Wrigley SM, and Groom AD (1994) Heterogeneity of red blood cell perfusion in capillary network supplied by a single arteriole in resting skeletal muscle. Circ Res 75:357–368.

    Article  PubMed  CAS  Google Scholar 

  • Ellsworth ML, Popel AM, and Pittman RN (1988) Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle. Microvasc Res 35:341–362.

    Article  PubMed  CAS  Google Scholar 

  • Groebe K (1995) An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data. Biophys J 68:1246–1269.

    Article  PubMed  CAS  Google Scholar 

  • Gronlund J, Malvin GM, and Hlastala MP (1989) Estimation of blood flow distribution in skeletal muscle from inert gas washout. J Appl Physiol 66:1942–1955.

    Article  PubMed  CAS  Google Scholar 

  • Hogan MC, Roca J, Wagner PD, and West JB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. J Appl Physiol 65:815–821.

    PubMed  CAS  Google Scholar 

  • Hogan MC, Roca J, West JB, and Wagner PD (1989) Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J Appl Physiol 66:1219–1226.

    PubMed  CAS  Google Scholar 

  • Hogan MC, Bebout DE, Gray AG, Wagner PD, West FB, and Haab PE (1990) Muscle maximal O2 uptake at constant O2 delivery with and without CO in the blood. J Appl Physiol 69:830–836.

    PubMed  CAS  Google Scholar 

  • Intaglietta M, Johnson PC, and Winslow RM (1996) Microvascular and tissue oxygen distribution. Cardiovasc Res 32:632–643.

    PubMed  CAS  Google Scholar 

  • Iversen PO and Nicolaysen G (1990) The distribution of blood flow and glucose uptake within single skeletal muscles in the awake rabbit. Acta Physiol Scand 14:373–381.

    Article  Google Scholar 

  • Iversen PO and Nicolaysen G (1991) Local blood flow and glucose uptake within resting and exercising rabbit skeletal muscle. Am J Physiol 260:H1795–H1801.

    PubMed  CAS  Google Scholar 

  • Iversen PO, Standa M, and Nicolaysen G (1989) Marked regional heterogeneity in blood flow within skeletal muscle at rest and during exercise hyperemia in the rabbit. Acta Physiol Scand 136:17–28.

    Article  PubMed  CAS  Google Scholar 

  • Iversen PO, Flatebo T, and Nicolaysen G (1992) Uneven perfusion within single cat muscles: nitric oxide and citric synthase play no role. Respir Physiol 89:329–339.

    Article  PubMed  CAS  Google Scholar 

  • Kerger H, Torres Filho IP, Rivas M, Winslow RM, and Intaglietta M (1995) Systemic and subcutaneous microvascular oxygen tension in conscious Syrian golden hamsters. Am J Physiol 268 (Heart Circ Physiol 37):H802–H810.

    PubMed  CAS  Google Scholar 

  • Kobayashi H and Takizawa N (1996) Oxygen saturation and pH changes in cremaster microvessels of the rat. Am J Physiol 270 (Heart Circ Physiol 39):H1453–H1461.

    PubMed  CAS  Google Scholar 

  • Kurdak SS, Grassi B, Wagner PD, and Hogan MC (1996) Blood flow distribution in working in situ canine muscle during blood flow reduction. J Appl Physiol 80:1978–1983.

    PubMed  CAS  Google Scholar 

  • Marconi C, Heisler N, Meyer M, Weitz H, Pendergast DR, Cerretelli P, and Piiper J (1988) Blood flow distribution and its temporal variability in stimulated dog gastrocnemius muscle. Respir Physiol 74:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Mercker H, Ochwadt B, and Schoedel W (1949) Der Einfluss der Erregungsfrequenz und der Belastung auf Durchblutung und Sauerstoffaufnahme des Muskels. Pflügers Arch 251:73–82.

    Article  Google Scholar 

  • Pendergast DR, Krasney JA, Ellis A, McDonald B, Marconi C, and Cerretelli P (1985) Cardiac output and muscle blood flow in exercising dogs. Respir Physiol 61:317–326.

    Article  PubMed  CAS  Google Scholar 

  • Piiper J (1988) Role of diffusion shunt in transfer of inert gases and O2in muscle. In: Oxygen Transport to Tissue X. Adv Exp Med Biol 222 (Mochizuki M, Honig CR, Koyama T, Goldstick TK, Bruley DF Eds) Plenum Press, New York and London, pp. 55–61.

    Chapter  Google Scholar 

  • Piiper J (1990) Unequal distribution of blood flow in exercising muscle of the dog. Respir Physiol 80:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Piiper J (1992) Modeling of oxygen transport to skeletal muscle: blood flow distribution, shunt, and diffusion. In: Oxygen Transport to Tissue XIII. Adv Exp Med Biol 316 (Goldstick TK, McCabe M, Maguire DJ Eds) Plenum Press, New York, pp. 3–10.

    Chapter  Google Scholar 

  • Piiper J and Haab P (1991) Oxygen supply and uptake in tissue models with unequal distribution of blood flow and shunt. Respir Physiol 84:261–271.

    Article  PubMed  CAS  Google Scholar 

  • Piiper J and Meyer M (1984) Diffusion-perfusion relations in skeletal muscle: model and experimental evidence from inert gas washout. In: Oxygen Transport to Tissue V. Adv Exp Med Biol 169 (Lubbers DW, Acker H, Lehniger-Follert E, Goldstick TK Eds) Plenum Press, New York and London, pp. 457–466.

    Chapter  Google Scholar 

  • Piiper J, Pendergast DR, Marconi C, Meyer M, Heisler H, and Cerretelli P (1985) Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J Appl Physiol 64:241–251.

    Google Scholar 

  • Richardson RL and Saltin B (1998) Human muscle blood flow and metabolism studied in the isolated quadriceps muscles. Med Sci Sports Exerc 30:28–33.

    PubMed  CAS  Google Scholar 

  • Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, and Wagner PD (1993) High muscle blood flow in man: is maximal O2 extraction compromised? J Appl Physiol 75:1911–1916.

    PubMed  CAS  Google Scholar 

  • Richardson RS, Knight DR, Poole DC, Kurdak SS, Hogan MC, Grassi B, and Wagner PD (1995) Determinants of maximal exercise VO2 during single leg knee-extension exercise in humans. Am J Physiol 268 (Heart Circ Physiol 37):H1453–H1461.

    PubMed  CAS  Google Scholar 

  • Richardson RS, Tagore K, Haseler LJ, Jordan M, and Wagner PD (1998) Increased VO2 max with right-shifted Hb-O2 dissociation curve at a constant O2 delivery in dog muscle in situ. J Appl Physiol 84:995–1002.

    PubMed  CAS  Google Scholar 

  • Roca J, Hogan MC, Story D, Bebout DE, Haab P, Gonzalez R, Ueno O, and Wagner PD (1989) Evidence for tissue diffusion limitation of VO2 max in normal humans. J Appl Physiol 67:291–299.

    PubMed  CAS  Google Scholar 

  • Roth AC and Wade K (1986) The effects of transmural transport in the microcirculation: a two gas species model. Microvasc Res 32:64–83.

    Article  PubMed  CAS  Google Scholar 

  • Roy TK and Popel AS (1996) Theoretical predictions of end-capillary PO2 in muscles of athletic and nonathletic animals at VO2max. Am J Physiol 271 (Heart Circ Physiol 40):H721–H737.

    PubMed  CAS  Google Scholar 

  • Sarelius IH (1986) Cell flow path influences transit time through striated muscle capillaries. Am J Physiol 250 (Heart Circ Physiol 19):H899–H907.

    PubMed  CAS  Google Scholar 

  • Sparks HV and Mohrman DE (1977) Heterogeneity of flow as an explanation of the multiexponential washout of inert gas from skeletal muscle. Microvasc Res 13:181–184.

    Article  Google Scholar 

  • Stainsby WN and Otis AG (1964) Blood flow, oxygen tension, oxygen uptake, and oxygen transport in skeletal muscle. Am J Physiol 206:858–866.

    PubMed  CAS  Google Scholar 

  • Torres Filho IP and Intaglietta M (1993) Microvessel PO2 measurements by phosphorescence decay method. Am J Physiol 265 (Heart Circ Physiol 34):H1434–H1438.

    PubMed  CAS  Google Scholar 

  • Torres Filho IP, Kerger H, and Intaglietta M (1996) PO2 measurements in arteriolar networks. Microvasc Res 51:202–212.

    Article  PubMed  CAS  Google Scholar 

  • Tyml K (1991) Heterogeneity of microvascular flow in rat skeletal muscle is reduced by contraction and by hemodilution. Int J Microcirc Clin Exp 10:75–86.

    PubMed  CAS  Google Scholar 

  • Wagner PD, Saltzman HA, and West JB (1974) Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36:588–599.

    PubMed  CAS  Google Scholar 

  • Zheng L, Golub AS, and Pittman RN (1996) Determination of PO2 and its heterogeneity in single capillaries. Am J Physiol 271 (Heart Circ Physiol 40):H365–H372.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piiper, J. (1999). Incomplete Oxygen Extraction in Exercising Muscle. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics