Skip to main content

Mechanism of Proton-Motive Activity of Heme-Copper Oxidases

  • Chapter
Frontiers of Cellular Bioenergetics
  • 165 Accesses

Abstract

Mammalian mitochondrial cytochrome c oxidase is responsible for the terminal step in the respiratory electron transfer chain of oxidation of cytochrome c and reduction of molecular oxygen. Energy from these reactions is conserved both because of the vectorial nature of the redox reactions and because of an associated mechanism that results in translocation of additional protons across the membrane. It has become clear that the mammalian enzyme is one member of a large and diverse superfamily of homologous oxidases that is widely distributed and includes both cytochrome c and quinol-oxidizing forms (Saraste et al., 1991). The influences of molecular biology and successes in solving two oxidase structures to atomic resolution (Tsukihara et al., 1995, 1996; Iwata et al., 1995) have clarified many issues and allow consideration of mechanistic questions at the atomic level. Of particular interest is the way in which electron transfer and oxygen reduction chemistry are coupled to the processes that result in the net transfer of protons across the membrane and the conservation of energy for subsequent use in endergonic processes such as ATP synthesis. The purpose of the present chapter is to review recent ideas on some of the critical features that likely underlie the mechanism of coupling of proton and electron transfers and to relate them to the available structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock, G. T., and Wikström, M., 1992, Oxygen activation and the conservation of energy in cell respiration, Nature 356:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S., Moody, A. J., Mitchell, R., and Rich, P. R., 1993, Binuclear centre structure of terminal protonmotive oxidases, FEBS Lett. 316:216–223.

    Article  PubMed  CAS  Google Scholar 

  • Brunori, M., and Wilson, M. T., 1995, Electron transfer and proton pumping in cytochrome oxidase, Biochimie 77:668–676.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio, N., Vygodina, T. V., Capitanio, G., Konstantinov, A. A., Nichols, P., and Papa, S., 1997, Redox-linked protolytic reactions in soluble cytochrome-c oxidase from beef-heart mitochondria: redox Bohr effects, Biochim. Biophys. Acta 1318:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Churg, A. K., and Warshel, A., 1986, Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins, Biochemistry 25:1675–1681.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Miller, S., and Babcock, G. T., 1996, Heme/Copper terminal oxidases, Chem. Rev. 96:2889–2907.

    Article  PubMed  CAS  Google Scholar 

  • Fetter, J. R., Qian, J., Shapleigh, J., Thomas, J. W., García-Horsman, A., Schmidt, E., Hosler, J., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S., 1995, Possible proton relay pathways in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 92:1604–1608.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J., and Gennis, R. B., 1994, The superfamily of heme-copper oxidases, J. Bacteriol. 176:5587–5600.

    PubMed  CAS  Google Scholar 

  • Gunner, M. R., and Honig, B., 1991, Electrostatic control of midpoint potentials in the cytochrome subunit of the Rhodopseudomonas viridis reaction center, Proc. Natl. Acad. Sci. USA 88:9151–9155.

    Article  PubMed  CAS  Google Scholar 

  • Hallén, S., Brzezinski, P., and Malmström, B. G., 1994, Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site, Biochemistry 33:1467–1472.

    Article  PubMed  Google Scholar 

  • Hosier, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgiou, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M. J., Babcock, G. T., and Gennis, R. B., 1993, Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa 3 and cytochrome bo, J. Bioenerg. Biomemb. 25:121–136.

    Article  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michael, H., 1995, Structure at 2.8 Ã… resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376:660–669.

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B., 1997, The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA 94:9085–9090.

    Article  PubMed  CAS  Google Scholar 

  • Malmström, B. G., 1993, Vectorial chemistry in bioenergetics: Cytochrome c oxidase as a redox-linked proton pump, Acc. Chem. Res. 26:332–338.

    Article  Google Scholar 

  • Meunier, B., Rodriguez-Lopez, J. N., Smith, A. T., Thorneley, R. N. F., and Rich, P. R., 1995, Laser photolysis behaviour of ferrous horseradish peroxidase with carbon monoxide and cyanide: effects of mutations in the distal heme pocket, Biochemistry 34:14687–14692.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, B., Rodriguez-Lopez, J. N, Smith, A. T., Thorneley, R. N. F., and Rich, P. R., 1998, Redox-and anion-linked protonation sites in horseradish peroxidase, Biochem. J. 330:303–309.

    PubMed  CAS  Google Scholar 

  • Meunier, B., and Colson, A.-M., 1994, Random deficiency mutations and reversions in the cytochrome c oxidase subunits I, II and III of Saccharomyces cerevisiae, Biochim. Biophys. Acta 1187:112–1

    Article  PubMed  CAS  Google Scholar 

  • Meunier, B., and Rich, P. R., 1997a, Coupling of protons transfer to oxygen chemistry in cytochrome oxidase; the roles of residues 167 and E243. Oxygen Homeostasis and Its Dynamics (Y. Ishimura, H. Shimada, and M. Suematsu, eds.), Springer-Verlag, Tokyo, pp. 106–111.

    Google Scholar 

  • Meunier, B, and Rich, P. R., 1997b, Photolysis of the cyanide adduct of the ferrous horseradish peroxidase, Biochim. Biophys. Acta 1318:235–245.

    Article  CAS  Google Scholar 

  • Mitchell, P., 1961, Coupling of phosphorylation to electron and proton transfer by a chemi-osmotic type of mechanism, Nature 191:144–148.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Glynn Research Ltd., Bodmin, United Kingdom.

    Google Scholar 

  • Mitchell, P., 1968, Chemiosmotic coupling and energy transduction, Glynn Research Ltd., Bodmin, United Kingdom.

    Google Scholar 

  • Mitchell, R., and Rich, P. R., 1994, Proton uptake by cytochrome c oxidase on reduction and on ligand binding, Biochim. Biophys. Acta 1186:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R., Mitchell, P., and Rich, P. R., 1992, Protonation states of the catalytic cycle intermediates of cytochrome c oxidase, Biochim. Biophys. Acta 1101:188–191.

    PubMed  CAS  Google Scholar 

  • Moody, A. J., and Rich, P. R., 1994, The reaction of hydrogen peroxide with pulsed cytochrome bo from Escherichia coli, Eur. J. Biochem. 226:731–737.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G. R., 1996, Haemoproteins, in: Protein Electron Transfer (D. S. Bendali, ed.), BIOS Scientific Publishers Ltd., Oxford, England, pp. 189–216.

    Google Scholar 

  • Moore, G. R., and Pettigrew, G. W., 1990, Redox potentials, in: Cytochromes c: Evolutionary, Structural and Physicochemical Aspects, Springer-Verlag, Berlin, chapter 7, pp. 309–362.

    Chapter  Google Scholar 

  • Moore, G. R., Harris, D. E., Leitch, F. A., and Pettigrew, G. W., 1984, Characterisations of ionisations that influence the redox potential of mitochondrial cytochrome c and photosynthetic bacterial cytochrome c 2, Biochim. Biophys. Acta 764:331–342.

    Article  CAS  Google Scholar 

  • Moore, G. R., Pettigrew, G. W., and Rogers, N. K., 1986, Factors influencing redox potentials of electron transfer proteins, Proc. Natl. Acad. Sci. USA 83:4998–4999.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Capitanio, N., Glaser, P., and Villani, G., 1994, The proton pump of heme-copper oxidases, Cell Biol. Int. 18:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Rich, P. R., 1995, Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases, Aust. J. Plant. Physiol. 22:479–486.

    Article  CAS  Google Scholar 

  • Rich, P. R., 1996, Electron transfer complexes coupled to ion translocation, in: Protein Electron Transfer (D. S. Bendali, ed.), BIOS Scientific Publishers Ltd., Oxford, England, pp. 217–248.

    Google Scholar 

  • Rich, P. R., Meunier, B., and Ward, F. B., 1995, Predicted structure and possible ionmotive mechanism of the sodium-linked NADH-ubiquinone oxidoreductase of Vibrio alginolyticus, FEBS Lett. 375:5–10.

    Article  PubMed  CAS  Google Scholar 

  • Rich, P. R., Meunier, B., Mitchell, R. M., and Moody, A. J., 1996, Coupling of charge and proton movement in cytochrome c oxidase, Biochim. Biophys. Acta 1275:91–95.

    Article  Google Scholar 

  • Saraste, M., Holm, L., Lemieux, L., Lübben, M., and van der Oost, J., 1991, The happy family of cytochrome oxidases, Biochem. Soc. Trans. 19:608–612.

    PubMed  CAS  Google Scholar 

  • Svensson, M., Hallen, S., Thomas, J. W., Lemieux, L. J., Gennis, R. B., and Nilsson, T., 1995, Oxygen reaction and proton uptake in helix VIII mutants of cytochrome bo 3, Biochemistry 34:5252–5258.

    Article  PubMed  CAS  Google Scholar 

  • Svensson-Ek, M., Thomas, J. W., Gennis, R. B., Nilsson, T., and Brzezinski, P., 1996, Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo 3 with oxygen, Biochemistry 35:13673–13680.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M., 1993, Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry 32:10923–10928.

    Article  PubMed  CAS  Google Scholar 

  • Trumpower, B. L., and Gennis, R. B, 1994, Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation, Annu. Rev. Biochem. 63:675–716.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1995, Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Ã…, Science 269:1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1996, The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Ã…, Science 272:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Verkhovsky, M. I., Morgan, J. E., and Wikström, M., 1995, Control of electron delivery to the oxygen reduction site of cytochrome c oxidase: A role for protons, Biochemistry 34:7483–7491.

    Article  PubMed  CAS  Google Scholar 

  • Wikström, M., 1989, Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping, Nature 338:776–778.

    Article  PubMed  Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M., 1981, Cytochrome Oxidase A Synthesis, Academic Press, London, pp. 1–198.

    Google Scholar 

  • Wikström, M., Bogachev, A., Finel, M., Morgan, J. E., Puustinen, A., Raitio, M., Verkhovskaya, M., and Verkhovsky, M. I., 1994, Mechanism of proton translocation by the respiratory oxidases. The histidine cycle, Biochim. Biophys. Acta 1187:106–111.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rich, P.R. (1999). Mechanism of Proton-Motive Activity of Heme-Copper Oxidases. In: Papa, S., Guerrieri, F., Tager, J.M. (eds) Frontiers of Cellular Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4843-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4843-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7196-0

  • Online ISBN: 978-1-4615-4843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics