Skip to main content

Vasopressin Gene Expression in Rat Choroid Plexus

  • Chapter
Vasopressin and Oxytocin

Summary

Vasopressin (VP) levels in cerebrospinal fluid (CSF) change in response to physiological stimuli and under various pathological conditions. The sources of CSF VP have yet to be clarified, however. In the present study, we provide evidence indicating that VP is synthesized in the choroid plexus, the primary site of CSF formation. All experiments were performed on adult male Sprague-Dawley rats. The presence of VP mRNA in choroid plexus epithelium was demonstrated by in situ hybridization histochemistry using the 35S-labeled riboprobe that was complementary to cDNA fragment of rat VP encoding the C-terminus part of proVP. In situ hybridization findings were confirmed by reverse transcriptase-polymerase chain reaction analysis. Immunohistochemistry for VP-associated neurophysin (VP-NP), a polypeptide component of proVP, revealed subapical accumulation of VP-NP-immunopositive product in choroidal epithelial cells. Immunoprecipitation and immunoblotting of choroidal protein extracts with anti-VP-NP antibody demonstrated the presence of a ~10-kD polypeptide that was also detected in hypothalamus. We hypothesize that the choroid plexus-derived VP exerts autocrine and/or paracrine effects on tissues near the CSF system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fenstermacher JD 1984 Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, pp 383–404

    Google Scholar 

  2. Cserr HF, Patlak CS 1991 Regulation of brain volume under isosmotic and anisosmotic conditions. Adv Comp Environ Physiol 9:61–80

    Article  Google Scholar 

  3. Raichle ME, Grubb RL, Eichling JO 1978 Central neuroendocrine regulation of brain water permeability. In: Cerebral Vascular Smooth Muscle and its Control. CIBA Foundation Symposium 56 (new series). Elsevier, Amsterdam, pp 219–235

    Google Scholar 

  4. De Pasquale M, Patlak CS, Cserr HF 1989 Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am J Physiol 256:F1059–F1066

    Google Scholar 

  5. Dôczi T, Szerdahelyi P, Gulya K, Kiss J 1982 Brain water accumulation after the central administration of vasopressin. Neurosurgery 11:402–407

    Article  PubMed  Google Scholar 

  6. Rosenberg GA, Kyner WT, Fenstermacher JD, Patlak CS 1986 Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol 251:F485–F489

    Google Scholar 

  7. Szmydynger-Chodobska J, Szczepanska-Sadowska E, Chodobski A 1990 Effect of arginine vasopressin on CSF composition and bulk flow in hyperosmolar state. Am J Physiol 259:R1250–R1258

    PubMed  CAS  Google Scholar 

  8. Dickinson LD, Betz AL 1992 Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab 12:681–690

    Article  PubMed  CAS  Google Scholar 

  9. Rosenberg GA, Scremin O, Estrada E, Kyner WT 1992 Arginine vasopressin V -antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke 23:1767–1774

    Article  PubMed  CAS  Google Scholar 

  10. Dóczi T, László FA, Szerdahelyi P, Joó F 1984 Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery 14:436–441

    Article  PubMed  Google Scholar 

  11. László FA, Varga CS, Baláspiri L 1993 Prevention of cerebral edema by the vasopressin antagonist d(CH2)5D-Ile2I1e4A1a9AVP in rats with experimental subarachnoid hemorrhage. Ann NY Acad Sci 689:627–629

    Article  PubMed  Google Scholar 

  12. Fuxe K, Agnati LF 1991 Two principal modes of electrochemical communication in the brain: volume versus wiring transmission. In: Fuxe K, Agnati LF (eds) Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. Raven Press, New York, pp 1–9

    Google Scholar 

  13. Ghersi-Egea J-F, Finnegan W, Chen J-L, Fenstermacher JD 1996 Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience 75:1271–1288

    Article  PubMed  CAS  Google Scholar 

  14. Szczepanska-Sadowska E, Gray D, Simon-Oppermann C 1983 Vasopressin in blood and third ventricle CSF during dehydration, thirst, and hemorrhage. Am J Physiol 245:R549–R555

    PubMed  CAS  Google Scholar 

  15. Simon-Oppermann C, Gray D, Szczepanska-Sadowska E, Simon E 1983 Vasopressin in blood and third ventricle CSF of dogs in chronic experiments. Am J Physiol 245:R541–R548

    PubMed  CAS  Google Scholar 

  16. Sorensen PS, Gjerris F, Hammer M 1984 Cerebrospinal fluid vasopressin and increased intracranial pressure. Ann Neurol 15:435–440

    Article  PubMed  CAS  Google Scholar 

  17. Sorensen PS, Gjerris F, Hammer M 1985 Cerebrospinal fluid vasopressin in neurological and psychiatric disorders. J Neurol Neurosurg Psychiatry 48:50–57

    Article  PubMed  CAS  Google Scholar 

  18. Seckl J, Lightman S 1988 Cerebrospinal fluid neurohypophysial peptides in benign intracranial hypertension. J Neurol Neurosurg Psychiatry 51:1538–1541

    Article  PubMed  CAS  Google Scholar 

  19. Simon-Oppermann C, Eriksson S, Simon E, Gray DA 1987 Gradient of arginine vasopressin concentration but not angiotensin II concentration between cerebrospinal fluid of anterior 3rd ventricle and cisterna magna in dogs. Brain Res 424:163–168

    Article  PubMed  CAS  Google Scholar 

  20. Chodobski A, Loh YP, Corsetti S, Szmydynger-Chodobska J, Johanson CE, Lim Y-P, Monfils PR 1997 The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium. Mol Brain Res 48:67–72

    Article  PubMed  CAS  Google Scholar 

  21. Young Ill WS, Kovacs K, Lolait SJ 1993 The diurnal rhythm in vasopressin V la receptor expression in the suprachiasmatic nucleus is not dependent on vasopressin. Endocrinology 133:585–590

    Article  PubMed  CAS  Google Scholar 

  22. Pu L-P, Van Leeuwen FW, Tracer HL, Sonnemans MAF, Loh YP 1995 Localization of vasopressin mRNA and immunoreactivity in pituicytes of pituitary stalk-transected rats after osmotic stimulation. Proc Natl Acad Sci USA 92:10653–10657

    Article  PubMed  CAS  Google Scholar 

  23. North WG 1987 Biosynthesis of vasopressin and neurophysins. In: Gash DM, Boer GJ (eds) Vasopressin: Principles and Properties. Plenum Press, New York, pp 175–209

    Google Scholar 

  24. Rodriguez EM, Heller, H 1970 Antidiuretic activity and ultrastructure of the toad choroid plexus. J Endocrinol 46:83–90

    Article  PubMed  CAS  Google Scholar 

  25. Rudman D, Chawla RK 1976 Antidiuretic peptide in mammalian choroid plexus. Am J Physiol 230:50–55

    PubMed  CAS  Google Scholar 

  26. Zlokovic BV, Segal MB, McComb JG, Hyman S, Weiss MH, Dayson H 1991 Kinetics of circulating vasopressin uptake by choroid plexus. Am J Physiol 260:F216–F224

    PubMed  CAS  Google Scholar 

  27. Nilsson C, Lindvall-Axelsson M, Owman C 1992 Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Rev 17:109–138

    Article  PubMed  CAS  Google Scholar 

  28. Rennick RE, Milner P, Burnstock G 1993 Thrombin stimulates release of endothelin and vasopressin, but not substance P, from isolated rabbit tracheal epithelial cells. Eur J Pharmacol 230:367–370

    Article  PubMed  CAS  Google Scholar 

  29. Fisone G, Snyder GL, Fryckstedt J, Caplan MJ, Aperia A, Greengard P 1995 Na’,K’-ATPase in the choroid plexus. Regulation by serotonin/protein kinase C pathway. J Biol Chem 270:2427–2430

    Article  PubMed  CAS  Google Scholar 

  30. Gee P, Rhodes CH, Fricker LD, Angeletti RH 1993 Expression of neuropeptide processing enzymes and neurosecretory proteins in ependyma and choroid plexus epithelium. Brain Res 617:238–248

    Article  PubMed  CAS  Google Scholar 

  31. Hanley MR, Benton HP, Lightman SL, Todd K, Bone EA, Fretten P, Palmer S, Kirk CJ, Michell RH 1984 A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309:258–261

    Article  PubMed  CAS  Google Scholar 

  32. Faraci FM, Mayhan WG, Heistad DD 1990 Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V,)-receptors. Am J Physiol 258:R94–R98

    PubMed  CAS  Google Scholar 

  33. Segal, MB, Chodobski A, Szmydynger-Chodobska J, Cammish H 1992 Effect of arginine vasopressin on blood vessels of the perfused choroid plexus of the sheep. Prog Brain Res 91:451–453

    Article  PubMed  CAS  Google Scholar 

  34. Shoji M, Kimura T, Kawarabayasi Y, Ota K, Inoue M, Yamamoto T, Sato K, Ohta M, Funyu T, Sonoyama T, Abe K 1994 Effects of acute salt loading on vasopressin mRNA level in the rat brain. Am J Physiol 266:R1591–R1595

    PubMed  CAS  Google Scholar 

  35. Wang BC, Flora-Ginter G, Leadley Jr RJ, Goetz, KL 1988 Ventricular receptors stimulate vasopressin release during hemorrhage. Am J Physiol 254:R204–R211

    PubMed  CAS  Google Scholar 

  36. Szmydynger-Chodobska J, Chodobski A, Johanson, CE 1992 The role of vasopressin and the sympathetic nervous system in mediating the inhibitory effect of angiotensin II on CSF formation in the rat. Soc Neurosci Abstr 18:153

    Google Scholar 

  37. Keil LC, Summy-Long J, Severs WB 1975 Release of vasopressin by angiotensin I1. Endocrinology 96:1063–1065

    Article  PubMed  CAS  Google Scholar 

  38. Qadri F, Culman J, Veltmar A, Maas K, Rascher W, Unger T 1993 Angiotensin I1-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II ATI receptors in the supraoptic nucleus. J Pharmacol Exp Ther 267:567–574

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chodobski, A. et al. (1998). Vasopressin Gene Expression in Rat Choroid Plexus. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics