Skip to main content

Accurate Configuration Interaction Computations of Potential Energy Surfaces using Massively Parallel Computers

  • Chapter
High-Performance Computing

Abstract

A great deal of useful information, for example reaction rates, product state distributions and insights into reaction mechanisms can be obtained from the theoretical study of chemical reactions. Such research is of fundamental importance for the modelling of processes occurring in combustion and in the atmosphere. As the first step in such studies, it is often necessary to obtain highly accurate global potential-energy surfaces (PESs), or at least definitive information about the height of reaction barriers and reaction energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. van der Steen, Overview of recent Supercomuters, National Computing Facilities Foundation, The Hague, The Netherlands (1997)

    Google Scholar 

  2. J.J. Dongarra and H. Meuer and E. Stohmaier, The 1995 TOP500 Report, Supercomputer, 12:1 (1996) Top500 list at, http://parallel.rz.uni-mannheim.de/top500.html.

    Google Scholar 

  3. R.J. Harrison and R. Shepard, Ann. Rev. Phys. Chem., 45:623 (1994)

    Article  CAS  Google Scholar 

  4. M.F. Guest and P. Sherwood and J.H. van Lenthe, Theor. Chim. Acta., 84:423, (1993).

    Article  Google Scholar 

  5. M.F. Guest and R.J. Harrison and J.H. van Lenthe and L.C.H. Corler, Theor. Chim. Acta., 71:117(1987).

    Article  CAS  Google Scholar 

  6. M. Schüler and T. Konvar and H. Lischka and R. Shepard and R.J. Harrison, Theor. Chim. Acta., 84:489(1993).

    Article  Google Scholar 

  7. H. Dachsel and H. Lischka and R. Shepard and J. Nieplocha and R.J. Harrison, J. Comp. Chem., 18:430(1997).

    Article  CAS  Google Scholar 

  8. R. Kobayashi and A.P. Rendell, Chem. Phys. Lett., 265:1 (1997).

    Article  CAS  Google Scholar 

  9. W. Meyer, in: Modern Theoretical Chemistry, H.F. Schaefer III ed., Plenum Publishing Company, New York,(1977)

    Google Scholar 

  10. H.-J. Werner and E.-A. Reinsch, J. Chem. Phys., 76:3144 (1982)

    Article  CAS  Google Scholar 

  11. H.-J. Werner and P.J. Knowles, J. Chem. Phys., 89:5803 (1988).

    Article  CAS  Google Scholar 

  12. P.J. Knowles and H.-J. Werner, Chem. Phys. Lett., 145:514 (1988).

    Article  CAS  Google Scholar 

  13. H.-J. Werner, in: Ab Initio Methods in Quantum Chemistry II, K.P. Lawley ed., John Wiley and Sons (1987).

    Google Scholar 

  14. P.J. Knowles and H.-J. Werner, Internally Contracted Multiconfiguration Reference Configuration Interaction Calculations for Excited States, Theor. Chim. Acta., 84:95–103 (1992)

    Article  CAS  Google Scholar 

  15. MOLPRO is a package of ab initio programs written by H.-J. Werner and P.J. Knowles, with contributions from R.D. Amos, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, T. Leininger, R. Lindh, A.W. Lloyd, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, M. Sch ütz, H. Stoll, A.J. Stone, and T. Thorsteinsson.

    Google Scholar 

  16. J. Nieplocha and R.J. Harrison and R.J. Littlefield, in: Proceedings of Supercomputing 1994, IEEE Computer Society Press, Washington, DC, (1994).

    Google Scholar 

  17. R.J. Harrison, Int. J. Quantum Chem., 40:847 (1991).

    Article  Google Scholar 

  18. B. Roos and P. Taylor and P.E.M. Siegbahn, Chem. Phys., 48:157 (1980).

    Article  CAS  Google Scholar 

  19. H.-J. Werner and P.J. Knowles, J. Chem. Phys., 82:5053 (1985).

    Article  CAS  Google Scholar 

  20. P.J. Knowles and H.-J. Werner, Chem. Phys. Lett., 115:259 (1985).

    Article  CAS  Google Scholar 

  21. E.R. Davidson, J. Chem. Phys., 17:87 (1975).

    Google Scholar 

  22. MPI: A message passing interface standard, Message Passing Interface Forum, University of Tennesee, Knoxville, Tennesee, USA (June 12, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dobbyn, A.J., Knowles, P.J. (1999). Accurate Configuration Interaction Computations of Potential Energy Surfaces using Massively Parallel Computers. In: Allan, R.J., Guest, M.F., Simpson, A.D., Henty, D.S., Nicole, D.A. (eds) High-Performance Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4873-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4873-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7211-0

  • Online ISBN: 978-1-4615-4873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics