Skip to main content

Syndromes of Accelerated Atherosclerosis

  • Chapter
Contemporary Concepts in Cardiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 217))

  • 97 Accesses

Abstract

The development and progression of coronary artery disease depend on both incorporation of lipid and deposition of fibrin and platelets into the arterial wall, with subsequent growth of fibroblasts and smooth muscle cells, as recently reviewed.1,2 Lipid incorporation contributes to luminal narrowing and appears to predispose the vascular wall to vasoconstriction and injury and subsequent thrombus formation. Variable degrees of vascular injury and mural thrombosis lead to repeated subclinical and periodic acute events in the progression of atherosclerosis (Figure 2.1). Most of the arterial changes are subclinical without symptoms, but others are clinical and include the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990’s. Nature 1993: 362: 801.

    Article  PubMed  CAS  Google Scholar 

  2. Fuster V, et al. The pathogenesis of Coronary Artery Disease and the Acute Coroanry Syndromes. N Engl J Med 1992: 326; 310.

    Article  PubMed  CAS  Google Scholar 

  3. Karino T, et al. Flow patterns in vessels of simple and complex geometries. Ann N Y Acad Sci 1987: 422.

    Google Scholar 

  4. Badimon L, et al. Thrombus formation on ruptures atherosclerosis plaques and rethrombosis on evolving thrombi. Circulation 1992: 86 (suppl III): III–74

    Google Scholar 

  5. Ip J, et al. Syndromes of accelerated atherosclerosis. Role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 1990: 15: 1667.

    Article  PubMed  CAS  Google Scholar 

  6. Stary HC. Composition and classification of human atherosclerosis lesions. Virchows Achiv (Pathol. Anat.) 421: 277.

    Google Scholar 

  7. Steinberg D, et al. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989: 320: 915.

    Article  PubMed  CAS  Google Scholar 

  8. Davies MJ. A macro and micro view of coronary vascular insults in ischemic heart disease. Circulation 1990: 82 (suppl II): II–38

    Google Scholar 

  9. Bruschke A, et al. The anatomic evaluation of coronary disease demonstrated by coronary angiography in non operated patients. Circulation 1981: 63: 527.

    Article  PubMed  CAS  Google Scholar 

  10. Little WC, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild, to moderate coronary artery disease. Circulation 1988: 78: 1157.

    Article  PubMed  CAS  Google Scholar 

  11. Ambrose J, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988: 12: 56.

    Article  PubMed  CAS  Google Scholar 

  12. Chesebro JH, Fuster V. Thrombosis in unstable angina. N Engl J Med 1992: 327: 192.

    Article  PubMed  CAS  Google Scholar 

  13. Richardson PD, et al. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerosis plaques. Lancet 1989: 2: 941.

    Article  PubMed  CAS  Google Scholar 

  14. Cheng GC, et al. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions.A structural analysis with histopathological correlation. Circulation 1993: 87: 1179.

    Article  PubMed  CAS  Google Scholar 

  15. Chesebro JH, et al. Antithrombotic therapy and progression of coronary artery disease. Circulation 86(suppl III): III 100.

    Google Scholar 

  16. Fernandez-Ortiz A, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: Implications for consequences of plaque rupture. J Am Coll Cardiol 1994: 23: 1562.

    Article  PubMed  CAS  Google Scholar 

  17. Steele PM, et al. Balloon angioplasty: Natural history of the pathophysiologic response to injury in a pig model. Circ Res 1985: 57: 105.

    Article  PubMed  CAS  Google Scholar 

  18. Heras M, et al. Effects of thrombin inhibition on the development of acute platelet-thrombus deposition during angioplasty in pigs: heparin versus recombinant hirudin, s specific thrombin inhibitor. Circulation 1989: 79: 657.

    Article  PubMed  CAS  Google Scholar 

  19. Heras M, et al. Hirudin, heparin and placebo during deep arterial injury in the pig. The in vivo role of thrombin in platelet-mediated thrombosis. Circulation 82: 1476.

    Google Scholar 

  20. Fuster V, et al. Atherosclerosis plaque rupture and thrombosis: evolving concepts. Circulation 1990: 82(suppl II): II 47

    CAS  Google Scholar 

  21. Woolf N. Interaction between mural thrombi and underlying artery wall. Haemostasis 1979: 8: 127.

    PubMed  CAS  Google Scholar 

  22. Woolf N, Carstairs KC. Infiltration and thrombosis in atherogenesis: A study using immun-ofluorescent techniques. Am J Path 1967: 51: 373.

    PubMed  CAS  Google Scholar 

  23. Woolf N, Carstairs KC. The survival time of platelets in experimental mural thrombi. J Path 1969: 97: 595.

    Article  PubMed  CAS  Google Scholar 

  24. Woolf N, et al. Experimentalmural thrombi in the pig aorta, the early natural history. B J Exp Path 1968: 49: 257.

    CAS  Google Scholar 

  25. Bini A, et al. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis: use of monoclonal antibody. Artheriosclerosis 1989: 9: 109.

    Article  CAS  Google Scholar 

  26. Smith EB, et al. Fate of fibrogen in human arterial intima. Arteriosclerosis 1990: 10: 263.

    Article  PubMed  CAS  Google Scholar 

  27. Badimon L, Badimon JJ. Mechanisms of arterial thrombosis in non-parallel stramlines. Platelet thrombi grow on the apex of stenotic severely injured vessel wall. J Clin Invest 1989: 84: 1134.

    Article  PubMed  CAS  Google Scholar 

  28. Mailhac A, et al. Effect on an eccentric severe stenosis on Fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Circulation, in press.

    Google Scholar 

  29. Gruentzig AR. Transluminal dilatation of coronary-artery stenosis. Lancet 1978: 1: 263.

    Article  Google Scholar 

  30. Kuntz RE, Bairn DS. Defining coronary restenosis. Newer clinical and angiographic paradigms. Circulation 1993: 88 1310.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson DE, et al. Primary peripheral arterial stenosis and restenosis excised by transluminal atherectomy: A histopathologic study. J Am Coll Cardiol 15: 419.

    Google Scholar 

  32. Casscells W. Migration of smooth muscle and endothelial cells: Critical events in restenosis. Circulation 1992: 86: 723.

    Article  PubMed  CAS  Google Scholar 

  33. Clowes AW, et al. Regulation of smooth muscle cell growth in injured arteries. J Cardiovasc Pharmacol 14(suppl 6): S12

    Google Scholar 

  34. Fingerle J, et al. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad USA 1989: 86: 8412.

    Article  CAS  Google Scholar 

  35. Lindner V, et al. Role of basic fibroblast growth factor in vascular ledion formation. Circ Res 1991: 68: 106.

    Article  PubMed  CAS  Google Scholar 

  36. Ferns GAA, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991: 253: 1129.

    Article  PubMed  CAS  Google Scholar 

  37. Bar-Shavit R, et al. Binding of thrombin to subendothelial extracellular matrix: Protection and expression of functional properties. J Clin Invest 1989: 84: 1096.

    Article  PubMed  CAS  Google Scholar 

  38. Weitz JI, et al. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin Ill-independent inhibitors. J Clin Invest 1990: 86: 385.

    Article  PubMed  CAS  Google Scholar 

  39. Weitz JI, Hudoba M. Mechanism by which clot-bound thrombin is protected from inactivation by fluid-phase inhibitors. Circulation 1992: 86: 1–413

    Article  Google Scholar 

  40. Hatton MW, et al. Deendothelialization in vivo initiates a thrombogenic reaction at the rabbit aorta surface. Correlation of uptake of fibrinogen and antithrombin II with thrombin generation by the exposed subendothelium. J Clin Invest 1989: 86: 452.

    Google Scholar 

  41. Ragosta M, et al. Specific factor Xa inhibition reduces restenosis after balloon angioplasty of atherosclerosis femoral arteries in rabbits. Circulation 1994: 89: 1262.

    Article  PubMed  CAS  Google Scholar 

  42. Bar-Shavit R, et al. Thrombin as a multifactorial protein induction of cell adhesion and proliferation. Am J Clin Mol Biol 1992: 6: 123.

    CAS  Google Scholar 

  43. Meyer BJ, et al. Inhibition of the progression of thrombus growth on pre-existing mural thrombus: targeting optimal therapy. J Am Coll Cardiol 1994: 23: 64A

    Google Scholar 

  44. Graham DJ, Alexander JJ. The effects of thrombin on bovine aortic endothelial and smooth muscle cells. J Vase Surg 1990: 11: 307–13

    CAS  Google Scholar 

  45. Weiss RH, Maduri M. The mitogenic effect of thrombin in vascular smooth muscle cells is largely duw to basic fibroblast growth factor. J Biol Chem 1993: 268: 5724.

    PubMed  CAS  Google Scholar 

  46. Nelken NA, et al. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 1992: 90: 1614.

    Article  PubMed  CAS  Google Scholar 

  47. Hedin U, et al. Antithrombin III inhibits thrombin-induced proliferation in human arterial smooth muscle cells. Arterioscler Thromb 1994: 14: 254.

    Article  PubMed  CAS  Google Scholar 

  48. Sarembock IJ, et al. Effectiveness of recombinant desulphatohirudin in reducing restenosis after balloon angioplasty of atherosclerotic femoral arteries in rabbits. Circulation 1991: 84: 232.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meyer, B.J., Badimon, L., Chesebro, J.H. (1999). Syndromes of Accelerated Atherosclerosis. In: Contemporary Concepts in Cardiology. Developments in Cardiovascular Medicine, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5007-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5007-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7274-5

  • Online ISBN: 978-1-4615-5007-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics