Skip to main content

Part of the book series: Telecommunication Technology and Applications Series ((TTAP))

Abstract

The principal motivations for all-optical networking arise from the ability of optical fiber technology to fulfil the growing demand for bandwidth per user, protocol transparency, higher path reliability, and simplified operation and management. In all these areas, established approaches realised via electronic circuitry, based on time division multiplexing (TDM) are beginning to prove insufficient, as they cannot perform the required operations as cheaply as the all-optical techniques, assuming they can perform them at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.E. Green, Jr., Optical networking updateIEEE J. Select. Areas in Commun. 14, 764–779 (1996).

    Article  Google Scholar 

  2. L.C. Blank, A.D. Ellis, and D.M. Spirit, Optical time division multiplexing, inHigh capacity optical transmissions explainedEds. D.M. Spirit and M.J. O’Mahony, John Wiley, New York (1995).

    Google Scholar 

  3. C.A. Bracket, Foreword: is there an emerging consensus on WDM networking?IEEE J. of Lightwave Technol. 14, 936–941 (1995).

    Google Scholar 

  4. T.H. Wu, D.J. Kolar, and R.H. Cardwell, Survivable network architectures for broadband fiber optic networks: model and performance comparisonIEEE J. Lightwave Technol. 6, 1698–1709 (1988).

    Article  Google Scholar 

  5. S.S. Wagner and T.E. Chapuran, Multiwavelength ring networks for switch consolidation and interconnection, inProceding of an International Conference on Communication, paper 340–5 (1992).

    Google Scholar 

  6. A.F. Elrefaie, Self-healing ring network architecture using WDM for growth, inProc. ECOC ‘82paper Tu PI-16 (1992).

    Google Scholar 

  7. C. A. Brackettet al.A scalable multiwavelength multi-hop optical network: a proposal for research on all-optical networks,IEEE J. Lightwave Technol. 11736–752 (1993).

    Article  Google Scholar 

  8. R. Ramaswami and K.N. Sivarajan, Routing and wavelength assignment in all-optical networksIEEE/ ACM Trans. Networking 3, 489–500 (1995).

    Article  Google Scholar 

  9. S. Baroni and P. Bayvel, Analysis of restoration requirements in wavelength-routed optical networks, inProc. NOC ‘86pp. 56–63 (1996).

    Google Scholar 

  10. N. Nagatsuet al.Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,IEEE J. Sel. Areas on Commun. 14893–902 (1996).

    Article  Google Scholar 

  11. M. Listanti, M. Berdusco, and R. Sabella, A new strategy for employing wavelength conversion in WDM optical networks, inProc. IEEE/LEOS ‘87San Francisco CA, (1997).

    Google Scholar 

  12. S.B. Alexanderet al.A precompetitive consortium on wide-band all optical networks,IEEE J. Lightwave Technol. 11714–735 (1993).

    Article  Google Scholar 

  13. A.S. Acampora, A multi-hop local lightwave networkin Proc. IEEE GLOBECOM ‘87Tokyo, Japan, pp. 1459–1467 (1987).

    Google Scholar 

  14. D.A. Smithet al.Integrated-optic acoustically tunable filters for WDM networks,IEEE J. Select. Areas in Commun. 81151–1159 (1990).

    Article  Google Scholar 

  15. A.S. AcamporaAn Introduction to Broadband NetworksPlenum Press, New York (1994).

    Google Scholar 

  16. ITU-T Recommendation G. 803, Architectures of transport networks based on the synchronous digital hierarchy (SDH), 03/93 (1993).

    Google Scholar 

  17. G.R. Hillet al.A transport network layer based on optical network elements,IEEE J. Lightwave Technol. 11667–679 (1993).

    Article  Google Scholar 

  18. A. Watanabe, S. Okamoto, and K. Sato, Optical path cross-connect node architecture with high modularity for photonic transport networks, IEICE Trans. on Commun.E77B1220–1229 (1994).

    Google Scholar 

  19. E. Iannone and R. Sabella, Performance evaluation of an optical multi-carrier network using wavelength converters based on FWM in semiconductor optical amplifiersIEEE J. Ligthwave Technol. 13, 312–324 (1995).

    Article  Google Scholar 

  20. E. Iannone and R. Sabella, Optical path technologies: a comparison among different cross-connect architecturesIEEE J. Lightwave Technol. 14,2184–2196 (1996).

    Article  Google Scholar 

  21. R. Sabella and E. Iannone, Wavelength conversion in optical transport networks’Fiber and Integrated Optics 15, 167–192 (1996).

    Article  Google Scholar 

  22. K. Sato, S. Okamoto, and H. Hadama, Network performance and integrity enhancement with optical path layer technologiesIEEE J. Select Areas in Commun. 12, 159–170, (1994).

    Article  Google Scholar 

  23. Y. Hamazumi, N. Nagatsu, and K. Sato, Number of wavelengths required for optical networks with failure restorationTech. Dig. OFC ‘84pp. 67–68 (1994).

    Google Scholar 

  24. N. Nagatsu, Y. Hamazumi, and K. Sato, Optical path accommodation design applicable to large scale networksIEICE Trans. on Commun. E78, 597–607 (1995).

    Google Scholar 

  25. R. Sabella, E. Iannone, and E. Pagano, Optical Transport Networks Employing All-Optical Wavelength Conversion: Limits and FeaturesIEEE Journal of Selected Areas in Commun. 14,(1996).

    Google Scholar 

  26. A. Mecozzi, Long distance transmission at zero dispersion: the combined effect of Kerr nonlinearity and noise of the in-line amplifiers, J. Opt. Soc. of Amer. B.11462–469 (1994).

    Article  Google Scholar 

  27. F. Matera and M. Settembre, Nonlinear evolution of amplitude and phase modulated signals and performance evaluation of single channel systems in long haul optical fiber links, J. Opt. Commun. in press.

    Google Scholar 

  28. L.G. Kazowsky and J.L. Gimlett, Sensitivity penalty in multichannel coherent optical communicationsIEEE J. Lightwave Technol. 6, 1353–1365 (1988).

    Article  Google Scholar 

  29. E. Lichtman, Performance degradation due to four-wave mixing in multichannel coherent optical communications systems, J. Opt. Commun.1253–58 (1991).

    Google Scholar 

  30. E. Iannone and R. Sabella, Analysis of wavelength-switched high-density WDM networks employing wavelength conversion by four-wave mixing in semiconductor optical amplifiersIEEE J. Lightwave Technol. 13, 1579–1592 (1995).

    Article  Google Scholar 

  31. J. Zhou, M. J. O’Mahony, and S. D. Walker, Analysis of optical crosstalk effects in multi-wavelength switched networksIEEE Photon. Technol. Lett. 6,302–305 (1994).

    Article  Google Scholar 

  32. R. Sabella and E. Iannone, A new modular optical path cross-connectElectron. Lett. 32, (1996).

    Google Scholar 

  33. A. D’Ottaviet alEfficiency and noise performances of wavelength converters based on FWM in semiconductor optical amplifiers,IEEE Photon. Technol. Lett. 31(1995).

    Google Scholar 

  34. M. Gustayssonet al.Monolithically integrated 4 x 4 InGaAsP/InP laser amplifier gate switch arrays, Electron. Lett.282223–2225 (1992).

    Article  Google Scholar 

  35. Y. Kinura, K. Suzuki, and M. Nakazawa, 46.5 dB gain in Er3 + -doped fibre amplifier pumped by 1.48 pm GaInAsP laser diodes, Electron. Lett.251656–1657 (1989).

    Article  Google Scholar 

  36. Data sheet of the Ampliphos OP-980-F-15 EDFA produced by Pirelli Cavi.

    Google Scholar 

  37. E. Iannone, R. Sabella, L. de Stefano, and F. Valeri, All-optical wavelength conversion in multi-carrier networks, IEEE Trans. on Commun.44716–724 (1996).

    Article  Google Scholar 

  38. A. J. Antos and D. K. Smith, Design and characterization of dispersion compensating fiber based on the LP01 mode,IEEE J. Lightwave121739–1745 (1994).

    Article  Google Scholar 

  39. C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, and A.M. Vengsarkar, Optical fiber-based dispersion compensation using higher order modes near cutoff, IEEE J. Lightwave Technol.121746–1758 (1994).

    Article  Google Scholar 

  40. P. Granestrandet al.Pigtailed tree-structured 8 x 8 LiNbO3 switch matrix with 112 digital optical switches,IEEE Photon. Technol. Lett. 671–73 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabella, R., Lugli, P. (1999). All-Optical Networks. In: High Speed Optical Communications. Telecommunication Technology and Applications Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5275-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5275-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7406-0

  • Online ISBN: 978-1-4615-5275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics