Skip to main content

Genetic Predisposition and Kindling Susceptibility in Primates

  • Chapter
Kindling 5

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 48))

Abstract

Among patients with temporal lobe epilepsy with a focus in identical anatomical locations, some patients have non-convulsive seizures exclusively, even when medication is withdrawn, while others begin with generalized convulsive seizures which readily recur when medication is reduced. Between these two extremes, there are those patients who display partial motor seizure without ever developing secondary generalization. The reason for such differences is not known. A less favorable prognosis has been suggested for those partial epilepsy patients with generalized seizures than for those without14,26,27. Furthermore, convulsive evolution in partial seizure is reported to be the major factor for a serious morbidity in status epilepticus6. An understanding of the mechanisms underlying convulsive evolution and its bilateralization/generalization is important since once they are defined, it may be possible to modify them for therapeutic or prophylactic purposes. However, due to the complexity and diversity of both etiologic and genetic factors in human epilepsy little progress has been made in our understanding, which is largely dependent on studies in animal models, of the underlying mechanisms. One of these models, kindling, has proved to be an ideal one for partial onset secondarily generalized seizure28. In this model, we have become accustomed to assessing the degree of kindling susceptibility by the speed with which convulsive development and its bilateralization/generalization occur. In general, once a day amygdaloid (AM) stimulation results in secondarily generalized convulsion in about two weeks in rodents, four weeks in cats, and 6–10 months in rhesus monkeys. Some strain difference has been noted within the same species as to the kindling rate24,46. In our laboratory we also noted, for example, that black hooded rats tend to kindle faster than Wister rats. Indeed, the potential contribution of genetic susceptibility has been studied by subjecting strains of mice17, gerbils2 and audiogenic rats to kindling4 assessing resultant evidence of interaction between kindling and intrinsic seizure predisposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baba, H., Sakai, S. and Wada, J.A., Premotor (area 6) cortical kindling in primates: Senegalese baboon (Papio papio) and rhesus monkey, In Wada, J.A. (Ed) Kindling 3, Raven Press, New York, 1986 447–469.

    Google Scholar 

  2. Cain, P. and Corcoran, M.E., Kindling in the seizure-prone and seizure resistant Mongolian gerbil, Electroenceph. Clin. Neurophvsiol, 49 (1980) 360–365.

    Article  CAS  Google Scholar 

  3. Chiba, S. and Wada, J.A., Amygdala kindling in rats with brain stem bisection, Brain Res., 682 (1995) 50–54.

    Article  PubMed  CAS  Google Scholar 

  4. Coffey, L.L., Reith, M.E.A., Chen, N.H., Mishra, P.K. and Jobe, P.C., Amygdala kindling of forebrain seizures and the occurrence of brain stem seizures in genetically epilepsy-prone rats, Epilepsia, 37 (1996) 188–197.

    Article  PubMed  CAS  Google Scholar 

  5. Corcoran, M.E., Cain, D.P. and Wada, J.A., Amygdaloid kindling in Papio cynocephalus and subsequent recurrent spontaneous seizures, Folia Psychiatrica et Neurologica Japonica,38 (1984) 151–159.

    PubMed  CAS  Google Scholar 

  6. DeLorenzo, R.J., Pellock, J.M. Towne, A.R. and Buggs, J.G., Epidemiology of status epilepticus, J. Clin. Neurophysiol., 12 (1995) 316–325.

    PubMed  CAS  Google Scholar 

  7. Ehara, T. and Wada, J.A., Midline thalamus and amygdaloid kindling, In Wada, J.A. (Ed) Kindling 4, Raven Press, New York, (1990) 409–422.

    Chapter  Google Scholar 

  8. Fukuda, H., Wada, J.A., Riche, D. and Naquet, R., Role of the corpus callosum and hippocampal commissure on transfer phenomenon in amygadaloid kindled cats, Exp. Neurol., 98 (1987) 189–197.

    Article  PubMed  CAS  Google Scholar 

  9. Goddard, G.V., McIntyre, D.C. and Leech, C.K., A permanent change in brain function resulting from daily stimulation, Exp. Neurol., 25 (1969), 295–330.

    Article  PubMed  CAS  Google Scholar 

  10. Hiyoshi, T. and Wada, J.A., Midline thalamic lesion and feline amygdaloid kindling. I. Effect of lesion placement prior to kindling, Electroenceph. Clin. Neurophysiol., 70 (1988) 325–338.

    Article  PubMed  CAS  Google Scholar 

  11. Hiyoshi, T. and Wada, J.A., Lasting nature of both transfer and interference in amygdaloid kindling in cats: observation upon stimulation with 11 month rest following primary site kindling, Epilepsia, 33 (1992) 222–227.

    Article  PubMed  CAS  Google Scholar 

  12. Hiyoshi, T., Wada, J.A., Kudo, T., Amano, K., Yagi, K. and Seino, M., Amygdaloid kindling in the Japanese monkey Macaca fuscata. I: Electroclinical seizure development and developed seizure, Epilepsia,In press.

    Google Scholar 

  13. Ishibashi, M. and Wada, J.A., Division of massa intermedia has no effect in feline amygdaloid kindling, Epilepsia, 31 (1990) 632.

    Google Scholar 

  14. Juul-Jensen, P. and Foldspang, A., Natural history of epileptic seizures, Epilepsia, 24 (1983) 297–312.

    Article  PubMed  CAS  Google Scholar 

  15. Kudo, T. and Wada, J.A., Effect of unilateral claustral lesion on intermittent light stimulation-induced convulsive response in D,D-allylglycine treated cats, Electroenceph. Clin. Neurophysiol., 95 (1995) 63–68.

    Article  PubMed  CAS  Google Scholar 

  16. Kudo, T. and Wada, J.A., Claustrum and amygdaloid kindling, In Wada, J.A. (Ed) Kindling 4, Plenum Press, New York, 1990 397–408.

    Chapter  Google Scholar 

  17. Leech, C.K. and McIntyre, D.C., Kindling rates in inbred mice: an analog to learning ? Behaviour Biol., 16 (1976) 439–452.

    Article  CAS  Google Scholar 

  18. McCaughran J.A. Jr., Corcoran, M.E. and Wada, J.A., Development of kindling amygdaloid seizures after section of the forebrain commissures in rats, Folia Psychiatrica et Neurologica Japonica, 30 (1976) 65–71.

    PubMed  Google Scholar 

  19. McCaughran, J.A., Corcoran, M.E. and Wada, J.A., Role of the forebrain commissures in amygdaloid kindling in rats, Epilepsia, 19 (1978), 19–33.

    Article  PubMed  Google Scholar 

  20. McIntyre, D.C., Split brain rat: transfer and interference of kindled amygdala convulsions, In Wada, J.A. (Ed) Kindling, Raven Press, New York, (1996) 85–102.

    Google Scholar 

  21. McIntyre, D.C., Forebrain commissure and limbic Kindled,In Reeves,A.J.(Ed)Epilepsy and the corpus callosum 2,Plenum Press.New Yirk,1995 79–89

    Google Scholar 

  22. McIntyre, D.C. and Goddard, G.V., Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdala, Electroenceph. Clin. Neurophysiol., 35 (1973) 533–543.

    Article  PubMed  CAS  Google Scholar 

  23. Naquet, R., Silva-Comte, C. and Menini, C., Implication of the frontal cortex in paroxysmal manifestations (EEG and EMG) induced by light stimulation in the Papio papio, In: Speckmann, E.J. and Elger, C.E. (Eds.) Epilepsy and motor system,Urban and Schwarzenberg, Munich, 1983 220–237.

    Google Scholar 

  24. Racine, R.J., Burhnam, W.M. and Gartner J.G., Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and interstimulus interval, Electroenceph. Clin. Neurophysiol., 35 (1973) 553–556.

    Article  PubMed  CAS  Google Scholar 

  25. Riche, D. and Lanoir, J., Some claustro-cortical connections in the cat and baboon as studied by retrograde horseradish peroxidase transport, J. Comp. Neurol., 177 (1978) 435–444.

    Article  PubMed  CAS  Google Scholar 

  26. Rodin, E.A., The prognosis of patients with epilepsy, Charles C, Thomas, Springfield,Ill., 1968.

    Google Scholar 

  27. Schmidt, D., Jing-Jane, T. and Jang, D., Generalized tonic-clonic seizures in patients with complex partial seizures: Natural history and prognostic relevance, Epilepsia, 24 (1983), 43–48.

    Article  PubMed  CAS  Google Scholar 

  28. Wada, J.A. Preface. Wada, J.A. Kindling, Raven Press, New York. 1976.

    Google Scholar 

  29. Wada, J.A., Amygdaloid and frontal cortical kindling in subhuman primates. In Girgis, M. and Kiloh, L.G. (Eds.) Limbic epilepsy and the dyscontrol syndrome, Elsevier, Amsterdam, (1980) 133–147.

    Google Scholar 

  30. Wada, J.A., Secondary cerebral functional alterations examined in the kindling model of epilepsy. In Mayerdorf, A. and Schmidt, R.P. (Eds.) Secondary epileptogenesis,Raven Press, New York (1982),45–114.

    Google Scholar 

  31. Wada, J.A., Erosion of kindled epileptogenesis and kindling induced long-term seizure suppressive effect in primates, In J.A. Wada (Ed) Kindling 4, Raven Press, New York, 1990, 383–396.

    Chapter  Google Scholar 

  32. Wada, J.A., Forebrain convulsive mechanisms examined in the primate model of generalized epilepsy: emphasis on the claustrum. In Malafosse, A., Genton, P., Hirsch, E. et al (Eds.) Idiopathic generalized epilepsies: clinical, experimental and genetic aspects, John Libby, London, (1994) 349–374.

    Google Scholar 

  33. Wada, J.A. and Komai, T., Effect of anterior two thirds callosal bisection upon bisymmetrical and bisynchronous generalized convulsions kindled from amygdala in epileptic baboon, Papio papio, In Reeves, A.G. (Ed) Epilepsy and the corpus callosum, Plenum Press, New York, 1985 75–98.

    Chapter  Google Scholar 

  34. Wada, J.A. and Mizoguchi, T., Limbic kindling in the forebrain bisected photosensitive baboon Papio papio. Epilepsia, 25 (1984) 278–287.

    Article  PubMed  CAS  Google Scholar 

  35. Wada, J.A and Naquet, R., Examination of neural mechanisms involved in photogenic seizure susceptibility in epileptic Senegalese baboon, Papio papio, Epilepsia, 13 (1972) 344.

    PubMed  CAS  Google Scholar 

  36. Wada, J.A. and Okamoto, M., The differential role of the mesial and lateral frontal cortices in amygdaloid kindling and kindled seizure in Senegalese baboons, Papio papio, Wada, J.A. (Ed.) Kindling 3, Raven Press, New York (1986) 409–426.

    Google Scholar 

  37. Wada, J.A. and Osawa, T., Spontaneous recurrent seizure state induced by daily electric amygdaloid stimulation in Senegalese baboons Papio papio, Neurology, 26 (1976) 273–28.

    Article  PubMed  CAS  Google Scholar 

  38. Wada, J.A. and Sato, M., The generalized convulsive seizure state induced by daily electrical stimulation of the amygdala in split brain cats, Epilepsia, 16 (1975) 417–430.

    Article  PubMed  CAS  Google Scholar 

  39. Wada, J.A. and Tsuchimochi, H., Claustral activation of hemispheric motor mechanism in partial seizure, Epilepsia, 33 (1992) 37.

    Google Scholar 

  40. Wada, J.A. and Tsuchimochi, H., Cingulate kindling in Senegalese baboons, Papio papio, Epilepsia, 36 (1995) 1142–1151.

    Article  PubMed  CAS  Google Scholar 

  41. Wada, J.A., Mizoguchi, T. and Komai, S., Cortical motor activation in amygdaloid kindling: observations in nonepileptic monkeys with anterior two thirds callosal section, In Wada, J.A. (Ed) Kindling 2, (1981) 235–248.

    Google Scholar 

  42. Wada, J.A., Mizoguchi, T. and Komai, S., Kindling epileptogenesis in orbital and mesial frontal cortical areas of subhuman primates, Epilepsia, 26 (1985) 472–479.

    Article  PubMed  CAS  Google Scholar 

  43. Wada, J.A., Nakashima, T. and Kaneko, Y, Forebrain bisection and feline amygdaloid kindling, Epilepsia, 23(1982)521–530.

    Article  PubMed  CAS  Google Scholar 

  44. Wada, J.A., Terao, A. and Booker, H.E., Longitudinal correlative analysis of photosensitive baboons, Papio papio, Neurology, 22(1972) 1272–12885.

    Article  PubMed  CAS  Google Scholar 

  45. Wada, J.A., Naquet, R., Cartier, J., Chaharmasson, G. and Menini, C., Further examination of neural mechanisms involved in photogenic seizure susceptibility in the epileptic Senegalese baboon, Papio papio, Electroenceph. Clin. Neueophysiol., 35 (1973) 786.

    Google Scholar 

  46. Wauquier, A. Ashton, D. and Mellis, W., Behavioural analysis of amygdaloid kindling in beagle dogs and the effects of clonazepam, diazepam, phenobarbital, diphenylhydantoin and flunarizine on seizure manifestation, Exp. Neurol., 64 (1979) 579–586.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wada, J.A. (1998). Genetic Predisposition and Kindling Susceptibility in Primates. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 5. Advances in Behavioral Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5375-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5375-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7453-4

  • Online ISBN: 978-1-4615-5375-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics