Skip to main content

Electrical Microactuators

  • Chapter
Microactuators

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 4))

Abstract

Electrical actuation in its electrostatic form relies on the coulombic attraction of oppositely charged material bodies. This mechanism has been known for a long time and coulombic actuators, in their simplest form, rely on the attraction of two charged plates or mechanical objects [1–6]. The force that can be produced by an electrostatic actuator is discussed in detail later in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Benjamin, A History of Electricity, John Wiley, New York, pp. 506–507 (1898).

    Google Scholar 

  2. J. Sparks (ed.), The Works of Benjamin Franklin.” Vol. 5, Whittemore, Niles, and Hall, Boston, p. 301 (1856).

    Google Scholar 

  3. Oleg D. Jefimenko, Electrostatic Motors. Electret Scientific Company, Star City (1973).

    Google Scholar 

  4. W.K.H. Panofsky, and M. Phillips, Classical Electricity and Magnetism. Addison-Wesley Publishing Co., Inc., Reading, MA, p. 106 (1955).

    MATH  Google Scholar 

  5. H. H. Woodson, and J. R. Melcher. Electromechanical Dynamics. Part I: Discrete Systems. John Wiley & Sons, Inc., New York, pp. 60–88 (1968).

    Google Scholar 

  6. W. S. N. Trimmer and K. J. Gabriel, “Design Considerations for Practical Electrostatic MicroMotor.” Sensors and Actuators, Vol. 11, pp. 189–206 (1987).

    Article  Google Scholar 

  7. K. Petersen, “Silicon as Mechanical Material.” Proc. IEEE, Vol. 70(5), pp. 420–457 (1982).

    Article  Google Scholar 

  8. T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press, New York, pp. 213–226 (1984).

    Google Scholar 

  9. H. Fujita and T. Ikoma, “Numerical Determination of the Electromechanical Field for a Micro Servosystem.” Sensors and Actuators, A21-A23, pp. 215–218 (1990).

    Google Scholar 

  10. S. D. Senturia, “The future of Microsensors and Microactuator Design.” Sensors and Actuators A 56, pp. 125–127 (1996).

    Article  Google Scholar 

  11. R. H. Price, J. E. Wood and S. C. Jacobson, “Modeling Considerations for Electrostatic Forces in Electrostatic Microactuators.” Sensors and Actuators, Vol. 20, pp. 107–114 (1989).

    Article  Google Scholar 

  12. R. Mahadevan, M. Mehreghany, K. J. Gabriel, “Application of Electric Microactuators to Silicon Micromechanics.” Sensors and Actuators, A21-A23, pp. 219–225 (1990).

    Google Scholar 

  13. S. Kumar, D. Cho, W. Carr, “A Proposal for Electrically Levitating Micromotors.” Sensors and Actuators A24, pp. 141–149 (1990).

    Google Scholar 

  14. T. Niino, T. Higuchi and S. Egawa, Proc. IEEE Industry Applications Conf., Orlando, FL, pp. 1318–1325 (1995).

    Google Scholar 

  15. H. Frohlich, Theory of Dielectrics. 2nd Edition. Oxford University Press, New York, p. 26 (1986).

    Google Scholar 

  16. S. Hoen, P. Merchant, G. Koke and J. Williams, “Electrostatic Surface Drives: Theoretical Considerations and Fabrication.” Transducers ′97, pp. 41–44 (1997).

    Google Scholar 

  17. N. Triole, D. Hauden, P. Blind, M. Froelicher and L. Guadriot, “Three-Dimensional Silicon Electrostatic Linear Microactuator.” Sensors and Actuators Vol. A 48, pp. 145–150 (1995).

    Google Scholar 

  18. N. Tas, J. Wissink, L. Sander, T. Lammerink and M. Elwenspoek, “The Shuffle Motor: A High-Force, High-Precision Linear Electrostatic Stepper Motor.” Transducers ′97, pp. 777–780 (1997).

    Google Scholar 

  19. L. Dellman et. al., “Fabrication Process of High Aspect Ratio Elastic Structures for Piezoelectric Motor Application.” Transducers ′97, pp. 641–644 (1997).

    Google Scholar 

  20. L.-S. Fan, Y.-C. Tai and R. S. Muller, “IC-Processed Electrostatic Micromotors.” 1988 IEEE Electron Devices Meet., San Francisco, CA, U.S.A, Dec. 11-14, pp. 666–669 (1988). (b) M. Mehregany, S.F. Bart, L.S. Tavrow, J. H. Lang, S. D Senturia, and M. F. Schlecht, “A Study of Three Microfabricated Variable-Capacitance Motors.” Sensors and Actuators, A21-A23, pp. 173-179 (1990).

    Google Scholar 

  21. R. S. Muller, “Microdynamics.” Sensors and Actuators, Vol. A21-A23, pp. 1–8 (1990).

    Google Scholar 

  22. Y-C. Tai and R. S. Muller, “IC-Processed Electrostatic Synchronous Micromotors.” Sensors and Actuators, Vol. 20, pp. 49–55 (1989).

    Article  Google Scholar 

  23. K. J. Gabriel, F. Behi, R. Mahadevan, and M. Mehregany, “In-situ Friction and Wear Measurements in Integrated Polysilicon Mechanisms.” Sensors and Actuators, A21-A23, pp. 184–188 (1990).

    Google Scholar 

  24. Yu-C. Tai, and R. S. Muller, “Frictional Study of IC-processed Micromotors.” Sensors and Actuators, A21-A23, pp. 180–183 (1990).

    Google Scholar 

  25. E. J. Garcia, and J. J. Sniegowski, “Surface Micromachined Microengine.” Sensors and Actuators, A 48, pp. 203–214 (1995).

    Google Scholar 

  26. S. F. Bart, T. A. Lober, R. T. Howe, J. H. Lang and M. F. Schlecht, “Design Considerations for Micromachined Electric Actuators.” Sensors and Actuators, Vol. 14, pp. 269–292 (1988).

    Article  Google Scholar 

  27. L. S. Tavrow, S. F. Bart and J. H. Lang, “Operational Characteristics of Microfabricated Electric Motors.” Sensors and Actuators A, 35, pp. 33–44 (1992).

    Article  Google Scholar 

  28. M. Mehregany, “ Silicon Microactuators.” In: Advances in Actuators. Edited by A. P. Dorey, and J. H. Moore, Institute of Physics Publishing, Techno House, Redcliffe Way, Bristol BS1 6NX, UK (1995).

    Google Scholar 

  29. K. C. Stark, Mechanical Coupling of Polysilicon Surface Micromachined Mechanisms. Ph.D. Dissertation, Case Western Reserve University (1997). (b) X.-Q. Sun, Z.-J. Li, and L.-T Liu, “The On-Chip Detection of Micromotor Rotational Speed.” Sensors and Actuator A 48, pp. 81-84 (1995).

    Google Scholar 

  30. J.-B. Huang, Q.-Y. Tong and P.-S. Mao, “Gas-Lubricated Microbearing for Microactuators.” Sensors and Actuators A, 35, pp. 69–75 (1992). b) H. Zarrad, et. al., “Optimization of Lubricants for Silica Micromotors.” Sensors and Actuators, A 46-47, pp. 598-600 (1995).

    Article  Google Scholar 

  31. A. Fujimoto, M. Sakata, M. Hirano and H. Goto, “Miniature Electrostatic Motor.” Sensors and Actuators A, 24, pp. 43–46 (1990).

    Article  Google Scholar 

  32. W. Trimmer and R. Jebens, “Harmonic Electrostatic Motors.” Sensors and Actuators, 20, pp. 17–24 (198).

    Google Scholar 

  33. M. Sakata, Y. Hatazawa, A. Omodaka. T. Kudoh, and H. Fujita, “An Electrostatic Top Motor and its Characteristics.” Sensors and Actuators, A21-A23, pp. 168–172 (1990).

    Google Scholar 

  34. S. C. Jacobson, R. H. Price, J. E. Wood, T. H. Rytting and M. Rafaelof, “A Design Overview of an Eccentric-Motion Electrostatic Microactuator (the Wobble Motor).” Sensors and Actuators, Vol. 20, pp. 1–16 (1989).

    Article  Google Scholar 

  35. S. F. Bart and J. H. Lang, “An Analysis of Electroquasistatic Induction Micromotors.” Sensors and Actuators, Vol. 20, pp. 97–106 (1989).

    Article  Google Scholar 

  36. M. A. Schmidt and R. T. Howe, “Resonant Structures for Integrated Sensors.” Tech. Digest, IEEE Solid-State Sensor Workshop, Hilton Head Island, SC, USA, pp. 94–97 (1986).

    Google Scholar 

  37. R. T. Howe, “Resonant Microsensors.” Tech. Digest, 4th Int. Conf. Solid-State Sensors and Actuators (Transducers ′87), Tokyo, Japan, pp. 843–848 (1987).

    Google Scholar 

  38. W. C. Tang, T.U — Chong, H. Nguyen and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures.” Sensors and Actuators, Vol. 20, pp. 25–32 (1989).

    Article  Google Scholar 

  39. R. A. Brennen, M. G. Lim, A. P. Pisano, and A. T. Chou, “Large Displacement Linear Actuator,” IEEE Workshop (1990).

    Google Scholar 

  40. V. P. Jaecklin, C. Linder, N. F. de Rooj and J.-M. Moret, “Comb Actuators for xy-Microstage.” Sensors and Actuators A, Vol. 39, pp. 83–89 (1993).

    Article  Google Scholar 

  41. M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated Optical Chopper.” Optical Engineering, Vol. 33(11), pp. 3634–3648 (1994).

    Article  Google Scholar 

  42. M.-H. Kiang, D. A. Francis, C. J. Chang-Hasnain, O. Solgaard, K. Y. Lau and R. S. Muller, “Actuated Polysilicon Micromirrors for Raster-Scanning Displays.” Transducers ′97, pp. 323–326 (1997).

    Google Scholar 

  43. M. Kohl, J. Gottert and J. Mohr, “Verification of the Micromechanical Characteristics of Electrostatic Linear Actuators.” Sensors and Actuators A 53, pp. 416–422 (1996).

    Google Scholar 

  44. L. S. Fan, S. J. Woodman and L. Crawforth, “Integrated Multilayer High Aspect Ratio Milliactuators.” Sensors and Actuators A 48, pp. 221–227 (1995).

    Google Scholar 

  45. K. Wang, A.-C. Wong, W.-T. Hsu, and C. T.-C Nguyen, “Frequency Trimming and Q-Factor Enhancement of Micromachined Resonators via Localized Filament Annealing.” Transducers ′97, pp. 109–112 (1997).

    Google Scholar 

  46. K. B. Lee and Y.-H. Cho, “Frequency Tuning of a Laterally Driven Micromotor Using an Electrostatic Comb Array of Linearly Varied Length.” Transducers ′97, pp. 113–116 (1997).

    Google Scholar 

  47. S. F. Bart, L. S. Tavrow, M. Mehregany and J. H. Lang, “Microfabricated Electrohydrodynamic Pumps.” Sensors and Actuators, A21-A23, pp. 193–197 (1990).

    Google Scholar 

  48. A. Richter, A. Plettner, K. A. Hofmann and H. Sandmaier, “A Micromachined Electrohydrodynamic (EHD) Pump.” Sensors and Actuators A, Vol. 29, pp. 159–168 (1991).

    Article  Google Scholar 

  49. R. Holland and E. P. Eer Nisse, Design of Resonant Piezoelectric Devices. The M.I.T. Press, Cambridge MA, pp. 42–95 (1968).

    Google Scholar 

  50. J. P. Shields, Basic Piezoelectricity. Howard S. Sams & Co. In. New York, pp. 27–40 (19966).

    Google Scholar 

  51. K. F. Etzold, “Ferroelectric and Piezoelectric Materials.” In: Electrical Engineering Handbook. Edited by R. C. Dorf, CRC Press Boca Raton, Florida, pp. 1087–1097 (1993).

    Google Scholar 

  52. J. M. Giannotto, “Poled Ferroelectric Ceramic Devices.” In: Electronics Engineer’s Handbook. Edited by D. G. Fink, McGraw-Hill, New York, p. 7–58 (1975).

    Google Scholar 

  53. C. J. Chen, Introduction to Scanning Tunneling Microscopy. Oxford University Press, New York, pp. 213–235 (1993).

    Google Scholar 

  54. D. Sarid, Scanning Force Microscopy. Oxford University Press, New York, p. 16 (1991).

    Google Scholar 

  55. G. T. Davis, “Piezoelectric and Pyroelectric Polymers.” In: Polymers for Electronic and Photonic Application. Edited by C.P. Wong, Academic Press, Inc., San Diego, pp. 435–461 (1993).

    Chapter  Google Scholar 

  56. R. M. Moroney, R. M. White and R. T. Howe, “Ultrasonic Micromotors: Physics and Applications.” IEEE Proceeding of Ultrasonics, Pub# CH832, pp. 182–187 (1990).

    Google Scholar 

  57. T. Morita, M. Kuosawa and T. Higuchi, “A Cylindrical Micro Ultrasonic Motor Fabricated by Improved Hydrothermal Method.” Transducers ′97, pp. 49–52.

    Google Scholar 

  58. A. M. Flynn, et. al., “ Piezoelectric Micromotors for Microrobots.” Proc. IEEE Ultrasonic Symp., pp. 1163–1172 (1990).

    Google Scholar 

  59. G. A. Racine, R. Luthier and N. F. de Rooj, “Hybrid Ultrasonic Micromachined Motors.” Proc. IEEE MEMS, pp. 128–132 (1993).

    Google Scholar 

  60. P. Murait et al., “Fabrication and Characterization of PZT Thin-Film Vibrators for Micromotors.” Sensors and Actuators A Vol. 48, pp. 157–165 (1995).

    Article  Google Scholar 

  61. T. Morita, M. Kurosawa, T. Higuchi, “An Ultrasonic Micromotor Using a Bending Cylindrical Transducer Based on PZT Thin Film.” Sensors and Actuators A 50, pp. 75–80 (1995).

    Article  Google Scholar 

  62. W. Gopel, “Ultimate Limits in the Miniaturization of Chemical Sensors.” Sensors and Actuators A Vol. 56, pp. 83–102 (1996).

    Article  Google Scholar 

  63. J. N. Zemel, “Future Directions for Thermal Information Sensors.” Sensors and Actuators A 56, pp. 57–62 (1996).

    Article  Google Scholar 

  64. A. P. Dorey, and J. H. Moore, Advances in Actuators. Institute of Physics Publishing, Techno House, Redcliffe Way, Bristol BS1 6NX, UK (1995).

    Google Scholar 

  65. M. E. Motamedi, “Micro-Opto-Electro-Mechanical Systems.” Optical Eng. Vol. 33(11), pp. 3505–3517 (1994).

    Article  Google Scholar 

  66. M. E. Motamedi, et. al., “Development of Micro-Electro-Mechanical Optical Scanner.” Opt. Eng. Vol. 36(5), pp. 1346–1353 (1997).

    Article  Google Scholar 

  67. V. P. Jaecklin, C. Linder and N. F. de Rooij, “Line-Addressable Torsional Micromirrors for Light Modulator Arrays.” Sensors and Actuators A, 41-42, pp. 324–329 (1994).

    Article  Google Scholar 

  68. Z. J. Yao and N. C. MacDonald, “ Single Crystal Silicon Supported Thin Film Micromirrors for Optical Applications.” Opt. Eng. 36(5), pp. 1408–1413 (1997).

    Article  Google Scholar 

  69. W. Dotzel, T. Gessner, R. Hahn and C. Kaufmann, “Silicon Mirrors and Micromirror arrays for Spatial Laser Beam Modulation.” Transducers ′97, pp. 81–84 (1997).

    Google Scholar 

  70. B. Wagner, K. Reimer, A. Maciossek and U. Hofmann, “Infrared Micromirror Arrays with Large Pixel Size and Large Deflection Angle.” Transducers ′97, pp. 75–78 (1997).

    Google Scholar 

  71. T. G. Bifano, et. al., “Continuos-Membrane Surface-Micromachined Silicon Deformable Mirror.” Opt. Eng., Vol. 36 (5), pp. 1354–1360 (1997).

    Article  Google Scholar 

  72. M. T. Ching, R. A. Brennen and R. M. White, “Microfabricated Optical Chopper.” In Miniature and Micro-Optics and Micromechanics Proc, SPIE 1992, pp. 40–46 (1993).

    Google Scholar 

  73. Th. Kraus, M. Batltzer, E. Obermeier, “A Micro Shutter for Applications in Optical and Thermal Detectors.” Transducers ′97, pp. 67–70 (1997).

    Google Scholar 

  74. G. Perragaux, P. Weiss, B. Kloek, H. Vuilliomenet and J.-P Thiebaud, “High-Speed Micro-Electromechanical Light Modulation Arrays.” Transducers ′97, pp. 71–74 (1997).

    Google Scholar 

  75. S. W. Smith, M. Mehregany, F. L. Merat, and D.A. Smith, “All-Silicon Waveguide and Bulk-Etched Alignment Structure on (110) Silicon for Integrated Micro-Opto-Mechanical Systems.” Proceedings of International Integrated Optics and Microstructures III SPIE Conference Vol. # 2686, pp. 17–28 (1996).

    Article  Google Scholar 

  76. S.-S. Lee, E. Motamedi and M. C. Wu, “Surface-Micromachined Free-Space Fiber Optic Switches with Integrated Microactuators for Optical Fiber Communication Systems.” Transducers ′97, pp. 85–88 (1997).

    Google Scholar 

  77. R. A. Miller, Y.-C. Tai, G. Xu, J. Bartha and F. Lin, “An Electromagnetic MEMS 2x2 Fiber Optic Bypass Switch.” Transducers ′97, pp. 89–92 (1997)

    Google Scholar 

  78. J. R. Reid, V. M. Bright and J. H. Comtois, “Automated Assembly of Flip-up Micromirrors.” Transducers ′97, pp. 347–350 (1997).

    Google Scholar 

  79. L. Fan, M. C. Wu, K. D. Choquette and M. H. Crawford, “Self-Assembled Microactuator XYZ Stages for Optical Scanning and Alignment.” Transducers ′97, pp. 319–322 (1997).

    Google Scholar 

  80. M. E. Motamedi, et. al., “Development of Micro-electro-mechanical Optical Scanner.” Opt. Eng., Vol. 36(5), pp. 1346–1353 (1997).

    Article  Google Scholar 

  81. T. Kawabata, M. Ikeda, H. Goto, M. Matsumoto and T. Yada, “The 2-Dimensional Micro Scanner Integlated with PZT Thin Film Actuator.” Transducers ′97, pp. 339–342 (1997). b) M.-H. Kiang, J. T. Nee, K. Y. Lau, and R. S. Muller, “Surface-Micromachined Diffraction Gratings for Scanning Spectroscopy Applications.” Transducers ′97, pp. 343-345 (1997).

    Google Scholar 

  82. R. A. Miller and Y.-C Tai, “Micromachined Electromagnetic Scanning Mirrors.” Opt. Eng., Vol. 36(5), pp. 1399–1407 (1997).

    Article  Google Scholar 

  83. T. Kanedo, T. Ohmi, N. Ohya, N. Kawahara, “A New, Compact and Quick-response Dynamic Focusing Lens.” Transducers ′97, pp. 63–66 (1997).

    Google Scholar 

  84. G. Vdovin, S. Middelhoek and P. M. Sarro, “Technology and Application of Micromachined Silicon Adaptive Mirrors.” Opt. Eng. Vol. 36(5), pp. 1382–1390 (1997).

    Article  Google Scholar 

  85. M. Tabib-Azar, Integrated Optics and Microstructure Sensors. Kluwer Academic Publishings, Boston (1995).

    Book  Google Scholar 

  86. M. Tabib-Azar, D. Polla, and K. Wang (Editors), Integrated Optics and Microstructures. Proceedings of International SPIE Conference (Pub. # 1793) (1992).

    Google Scholar 

  87. M. Tabib-Azar and D. Polla (Editors), Integrated Optics and Microstructures II. Proceedings of International SPIE Conference (Pub. # 2291) (1994).

    Google Scholar 

  88. M. Tabib-Azar (Editor), Integrated Optics and Microstructures III. Proceedings of International SPIE Conference (Pub. # 2686) (1996).

    Google Scholar 

  89. M. Tabib-Azar and G. Beheim, “Modern Trends in Microstructures and Integrated Optics for Communication, Sensing and Actuation.” Optical Eng., Vol. 36(5), (1997).

    Google Scholar 

  90. W. Lukosz and P. Pliska, “Electrostatically Actuated Integrated Optical Nanomechanical Devices.” Proceeding of Integrated Optics and Microstructures, SPIE Vol. 1793, pp. 214–234 (1992).

    Article  Google Scholar 

  91. G. A. Magel, “Integrated Optic Devices Using Micromachined Metal Membranes.” Proceedings of International Integrated Optics and Microstructures III SPIE Conference Vol. 2686, pp. 54–63 (1996).

    Article  Google Scholar 

  92. R. M. Boysel, et al., “Integration of Deformable Mirror Devices with Optical Fibers and Waveguides.” SPIE Vol. 1793, pp. 34–41 (1992).

    Article  Google Scholar 

  93. S. Martellucci, A. Chester and M. Bertolotti, Advances in Integrated Optics. Plenum (1994).

    Google Scholar 

  94. L. A. Field, et al., “Micromachined 1x 2 Optical-Fiber Switch.” Sensors and Actuators A53, pp. 311–315 (1996).

    Google Scholar 

  95. K. Hogari, and T. Matsumoto, “Electrostatically Driven Micromechanical 2x2 Optical Switch.” Applied Optics Vol. 30(10), pp. 1253–1257 (1991).

    Article  Google Scholar 

  96. R. Dangel, and W. Lukosz, “Electromechanically Actuated Integrated-Optical Mach-Zehnder Interferometer.” Technical Digest series Volume 6, Integrated Photonics Research, April 29–May 2, Boston, MA, pp. 182–540 (1996).

    Google Scholar 

  97. R. A. Soref, J. P. Lorenzo, “Silicon Guided-Wave Optics.” Solid-State Technology November, pp. 95–98 (1988).

    Google Scholar 

  98. M. A. Duguay, Y. Kokuban, T. L. Koch and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures.” Appl. Phys. Lett. 49, pp. 13–15 (1986).

    Article  Google Scholar 

  99. A. Nathan, K. Benaissa, “Silicon Integrated Optic Devices and Micromechanical Sensors Based on ARROW.” Proceedings of International Integrated Optics and Microstructures III SPIE Conference (Pub. # 2686), pp. 2–16 (1996).

    Google Scholar 

  100. K. H. Rollke, and W. Sohler, “Metal-Clad Waveguide as a Cutoff Polarizer for Integrated Optics.” IEEE Journal of Quantum Electr. Vol. QE-13(4) pp. 141–145 (1977).

    Article  Google Scholar 

  101. K. Fischer, J. Muller, R. Hoffmann, F. Wasse, and D. Salle, “Elasto-optical Properties of SiON Layers in an Integrated Optical Interferometer Used as a Pressure Sensor.” J. Lightwave Tech., Vol. 12(1), pp. 163–169 (1994).

    Article  Google Scholar 

  102. A. Garcia, and M. Tabib-Azar, “Sensing Means and Sensor Shells: A New Method of Comparative Study of Piezoelectric, Piezoresistive, Electrostatic, Magnetic, and Optical Sensors.” Sensors and Actuators A. Physical Vol. 48(2), pp. 87–100 (1995).

    Article  Google Scholar 

  103. O. Parriaux, “Integrated Optics Sensors.” In: Advances in Integrated Optics. Eds: S. Martellucci, A.N. Chester, and M. Bertolotti, Plenum Press, New York, pp. 227–242 (1994).

    Chapter  Google Scholar 

  104. X. C. Jin, I. Ladabaum and B. T. Khuri-Yakub, “The Microfabrication of Capacitive Ultrasonic Transducers.” Transducers ′97, pp. 437–440 (1997).

    Google Scholar 

  105. A. Lal, R. M. White, “Silicon Micromachined Ultrasonic Micro-Cutter.” Proceedings of IEEE Ultrasonics Symposium, pp. 1907–1911 (1994).

    Google Scholar 

  106. S. Shoji, S. S. Nakagawa and M. Esashi, “Micropump and Sample-Injector for Integrated Chemical Analyzing Systems.” Sensors and Actuators, A21-A23, pp. 189–192 (1990).

    Google Scholar 

  107. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A Bidirectional Silicon Micropump.” Sensors and Actuators A, Vol. 50, pp. 81–86 (1995).

    Article  Google Scholar 

  108. T. Gerlach, H. Wurmus, “Working Principles and Performance of the Dynamic Micropump.” Sensors and Actuators A, Vol. 50, pp. 135–140 (1995).

    Article  Google Scholar 

  109. M. Esashi, “Integrated Micro Flow Control Systems.” Sensors and Actuators, A21-A23, pp. 161–167 (1990).

    Google Scholar 

  110. A. Olsson, G. Stemme and Erik Stemme, “A Valve-Less Planar Fluid Pump with two Pump Chambers.” Sensors and Actuators A, Vol. 46-47, pp. 549–556 (1995).

    Article  Google Scholar 

  111. L. Kuhn, E. Bassous and R. Lane, “Silicon Charge Electrode Array for Ink Jet Printing.” IEEE Transaction on Electron Devices, Vol. ED-25(10), pp. 1257–1260 (1978).

    Article  Google Scholar 

  112. F. J. Kamphoefner, “Ink Jet Printing.” IEEE Transaction on Electron Devices, Vol. ED-19(4), pp. 584–593 (1972).

    Article  Google Scholar 

  113. K. E. Petersen, “Fabrication of an Integrated, Planar Silicon Ink-Jet Structure.” IEEE Transaction on Electron Devices, Vol. ED-26(12), pp. 1918–1920 (1979).

    Article  Google Scholar 

  114. R. D. Carnahan and S. L. Hou, “Ink Jet Technology.” IEEE Transactions on Industry Applications, Vol. IA-13(1) pp. 95–105 (1977).

    Article  Google Scholar 

  115. R. G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink Jets.” The Review of Scientific Instruments, Vol. 36(2), pp. 131–136 (1965).

    Article  Google Scholar 

  116. E. Stemme and G. Stemme, “A Valveless Diffuser/Nozzle-Based Fluid Pump.” Sensors and Actuators A, Vol. 39, pp. 159–167 (1993).

    Article  Google Scholar 

  117. K. Petersen, “From Microsensors to Microinstruments.” Sensors and Actuators A Vol. 56, pp. 143–149 (1996).

    Article  Google Scholar 

  118. J. Fluitman, “Microsystem Technology: Objectives.” Sensors and Actuators A Vol. 56, pp. 151–166 (1996).

    Article  Google Scholar 

  119. S. Majumder, et. al., “Measurement and Modeling of Surface Micromachined, Electrostatically Actuated Microswitches.” Transducers ′97, pp. 1145–1148 (1997).

    Google Scholar 

  120. B. Romanowicz, Ph. Lerch, Ph. Renaud, E. Fullin and Y. de Coulon, “Simulation of Integrated Electromagnetic Device Systems.” Transducers ′97, pp. 1051–1054 (1997). b) T. Seki, M. Sakata, T. Nakajima and M. Matsumoto, “Thermal Buckling Actuator for Micro Relays.” Transducers ′97, pp. 1153-1156 (1997).

    Google Scholar 

  121. H. J. Mamin, L. S. Fan, S. Hoen and D. Rugar, “Tip-Based Storage Using Micromechanical Cantilevers.” Sensors and Actuators A, Vol. 48, pp. 215–219 (1995).

    Article  Google Scholar 

  122. M. I. Lutwyche and Y. Wada, “Manufacture of Micromachined Scanning Tunneling Microscopes for Observation of the Tip Apex in a Transmission Electron Microscope.” Sensors and Actuators A, Vol. 48, pp. 127–136 (1995).

    Article  Google Scholar 

  123. P.-F. Indermuhle, V. P. Jaecklin, J. Brugger, C. Linder, N. F. de Rooij and M. Binggeli, “AFM Imaging with an xy-Micropositioner with Integrated Tip.” Sensors and Actuators A 46-47, pp. 562–565 (1995).

    Article  Google Scholar 

  124. J. Brugger, R. A. Buser and N. F. de Rooij, “Silicon Cantilevers and Tips for Scanning Force Microscopy.” Sensors and Actuators A, Vol. 34, pp. 193–200 (1992).

    Article  Google Scholar 

  125. T. R. Albrecht, S. Akamine, M. J. Zdeblick and C. F. Quate, “Microfabrication of Integrated Scanning Tunneling Microscope.” J. Vac. Sci. Technol. A Vol. 8(1), pp. 317–318 (1990).

    Article  Google Scholar 

  126. S. Akamine, T. R. Albrecht, M. J. Zdeblick and C. F. Quate, “A Planar Process for Microfabrication of a Scanning Tunneling Microscope.” Sensors and Actuators, A21-A23, pp. 964–970 (1990).

    Google Scholar 

  127. K. Matsumoto, M. Ishii, J-i Shirakashi, K. Segawa, Y. Oka, B. J. Vartanian and J. S. Harris, “Comparison of Experimental and Theoretical Results of Room Temperature Operated Single Electron Transistor made by STM/AFM Nano-Oxidation Process.” Proc. of IEDM ′95, pp. 363–366.

    Google Scholar 

  128. D. Samara, J. R. Williamson, C. K. Shih and S. K. Banerjee, “Scanning Tunneling Microscopy Induced Chemical-Vapor Deposition of Semiconductor Quantum Dots.” J. Vac. Sci. Technol. B Vol. 14(2), pp. 1344–1348 (1996).

    Article  Google Scholar 

  129. G. J. Berry, J. A. Cairns and J. Thomson, “The Production of Fine Metal Tracks from a New Range of Organometallic Compounds.” Sensors and Actuators A Vol. 51, pp. 47–50 (1995).

    Article  Google Scholar 

  130. H. J. Mamin, L. S. Fan, S. Hoen and D. Rugar, “Tip-Based Data Storage Using Micromechanical Cantilevers.” Sensors and Actuators A Vol. 48, pp. 215–219 (1995).

    Article  Google Scholar 

  131. R. C. Barrett and C. F. Quate, “Charge Storage in a Nitride-Oxide-Silicon Medium by Scanning Capacitance Microscopy.” J. Appl. Phys. Vol. 70(5), pp. 2725–2733 (1991).

    Article  Google Scholar 

  132. T. R. Albrecht, S. Akamine, T. E. Carver and C. F. Quate, “Microfabrication of Cantilever Styli for the Atomic Force Microscope.” J. Vac. Sci. Technol. A Vol. 8(4), 3386–3396 (1990).

    Article  Google Scholar 

  133. Private communication with M. Tabib-Azar and Morton Litt.

    Google Scholar 

  134. T. Hattori, “Achievements of Japanese Micromachined Projects.” Transducers ′97, pp. 25–28 (1997).

    Google Scholar 

  135. S. Charles and R. Williams, “Micromachined Structures in Ophthalmic Microsurgery.” Sensors and Actuators, A21-A23, pp. 263–266 (1990).

    Google Scholar 

  136. S. Shoji, M. Esashi and T. Matsuo, “Fabrication of an Integrated Microphone Head for Fault Analysis of MOS Integrated Circuits.” Sensors and Actuators, Vol. 14, pp. 125–132 (1988).

    Article  Google Scholar 

  137. G. Lim, K. Park, M. Sugihara, K. Minami and M. Esashi, “Future of Active Catheters.” Sensors and Actuators A Vol. 56, pp. 113–121 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabib-Azar, M. (1998). Electrical Microactuators. In: Microactuators. Electronic Materials: Science and Technology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5445-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5445-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8089-4

  • Online ISBN: 978-1-4615-5445-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics