Skip to main content

Gap Junctions, Cardiac Excitability and Clinical Arrhythmias

  • Chapter
Heart Cell Communication in Health and Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 200))

Abstract

The explosive growth in our understanding of cellular electrophysiology and the relationship to clinical arrhythmias continues. Much of the basic science that concerns the role of gap junctions in arrhythmias has been reviewed in other chapters in this book. The purpose of this chapter is to create an intellectual framework for the clinician that is based on biophysical theory and to allow the researcher who is not a physician insight into clinical thought processes. The emphasis will be on the known and probable role of gap junctions in normal and abnormal cardiac excitability with an emphasis on arrhythmogenesis due to anisotropic conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ginsburg K and Arnsdorf MF (1995). Cardiac excitability, gap junctions, cable properties and impulse propagation. In: Sperelakis N (ed). Physiology and Pathophysiology of the Heart (ed 3rd). Boston: M. Nijhoff, pp. 153–199.

    Google Scholar 

  2. Kovacs SJ (1991). A Clinical Perspective on Theory of Heart. In: Glass L, Hunter P and McCulloch A (eds). Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York: Springer, pp. 609–611.

    Google Scholar 

  3. Goldberger AL and Rigney DR (1991). Nonlinear Dynamics at the Bedside. In: Glass L, Hunter P and McCulloch A (eds). Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York: Springer, pp. 584–605.

    Google Scholar 

  4. Denton TA, Diamond GA, Helfant RH, Khan S, and Karagueuzian H: Fascinating rhythm (1990). A primer on chaos theory and its application to cardiology. Am Heart J, 120: 1419–1440.

    Article  CAS  PubMed  Google Scholar 

  5. Landau M, Lorente P, Michaels D, and Jalife J (1990). Bistabilities and annihilation phenomena in electrophysiological cardiac models. Circ Res, 66: 1658–1672.

    Article  CAS  PubMed  Google Scholar 

  6. Lorente P and Davidenko J (1990). Hysteresis phenomena in excitable cardiac tissues. Ann NY Acad Sci, 591: 109–127.

    Article  CAS  PubMed  Google Scholar 

  7. Arnsdorf MF, Schmidt GA, and Sawicki G (1985). The effects of encainide on the determinants of cardiac excitability in sheep Purkinje fibers. J Pharmacol Exp Ther, 223: 40–48.

    Google Scholar 

  8. Sawicki GJ and Arnsdorf MF (1985). Electrophysiologic actions and interactions between lysophosphatidylcholine and lidocaine in the non-steady state: The match between multiphasic arrhythmogenic mechanisms and multiple drug effects in cardiac Purkinje fibers. J Pharmacol Exp Ther, 235: 829–838.

    CAS  PubMed  Google Scholar 

  9. Arnsdorf MF and Wasserstrom JA (1987). A matrical approach to the basic and clinical pharmacology of antiarrhythmic drugs. Reviews in Clinical and Basic Pharmacology, 6: 131–188.

    CAS  PubMed  Google Scholar 

  10. Arnsdorf MF (1987). Intracardiac electrophysiologic studies for drug selection in ventricular tachycardia: The need for new approaches based on perturbations of the electrophysiologic matrix. Circulation, 75: III-137–139.

    Google Scholar 

  11. Arnsdorf MF and Sawicki GJ (1987). The effects of quinidine sulfate on the balance among active and passive cellular properties which comprise the electrophysiologic matrix and determine excitability in sheep Purkinje fibers. Circ Res, 61: 244–255.

    Article  CAS  PubMed  Google Scholar 

  12. Arnsdorf MF (1989). Cardiac excitability and antiarrhythmic drugs: A different perspective. J Clin Pharmacol, 29: 395–404.

    CAS  PubMed  Google Scholar 

  13. Arnsdorf MF (1990). Arnsdorf s Paradox. J Cardiovas Electrophys, 1: 42–52.

    Article  Google Scholar 

  14. Arnsdorf MF (1990). The cellular basis of cardiac arrhythmias: A matrical prespective. Ann NY Acad Sci, 601: 263–280.

    Article  CAS  PubMed  Google Scholar 

  15. Arnsdorf MF (1990). Electrophysiologic matrices, cardiac arrhythmias, and antiarrhythmic drugs. In: Rosen MR, Janse MJ and Wit AL (eds). Cardiac Electrophysiology: A Textbook. Mount Kisco: Futura Publishing Company, pp. 3–28.

    Google Scholar 

  16. Arnsdorf MF and Sawicki GJ (1996). Flecainide and the electrophysiologic matrix: The effects of flecainide acetate on the determinants of cardiac excitability in sheep Purkinje fibers. J Cardiovasc Electrophysiol, 7: 1172–1182.

    Article  CAS  PubMed  Google Scholar 

  17. Hodgkin AL and Rushton WAH (1946). The electrical constants of a crustacean nerve fibre. Proc Roy Soc B, 133: 444–479.

    Article  Google Scholar 

  18. Dominguez G and Fozzard HA (1970). Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circ Res, 26: 565–574.

    Article  CAS  PubMed  Google Scholar 

  19. Fozzard HA and Schoenberg M (1972). Strength-duration curves in cardiac Purkinje fibres: Effects of liminal length and charge distribution. J Physiol (Lond), 226: 593–618.

    CAS  Google Scholar 

  20. Heidenheim M (1901). Über die Structur des menschlichen Herzmuskels. Anat Anz, 20: 3–79.

    Google Scholar 

  21. Engelmann TW (1875). Über die Leitung der Erregung im Herzmuskel. Pflügers Arch, 11: 465–480.

    Article  Google Scholar 

  22. Engelmann TW (1877). Vergleichende Untersuchungen zur Lehre von der Muskel-und Nervenelectricitat. Pfluegers Arch Physiol, 15: 116–148.

    Article  Google Scholar 

  23. Sjostrand FS and Andersson E (1954). Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia, 10: 369–372.

    Article  CAS  PubMed  Google Scholar 

  24. Lal R and Arnsdorf MF (1992). Voltage-dependent gating and single channel conductance of adult mammalian atrial gap junctions. Circ Res, 71: 737–743.

    Article  CAS  PubMed  Google Scholar 

  25. Lindemans FW and Denier Van der Gon JJ (1978). Current thresholds and liminal size in excitation of heart muscle. Cardiovasc Res, 12: 477–485.

    Article  CAS  PubMed  Google Scholar 

  26. Michaels DC, Slenter VA, Salata JJ, and Jalife J (1983). A model of dynamic vagus-sinoatrial node interactions. Am J Physiol, 245: H1043–1053.

    Google Scholar 

  27. Guevara MR, Glass L, and Shrier A (1981). Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science, 214: 1350–1353.

    Article  CAS  PubMed  Google Scholar 

  28. Jalife J and Moe GK (1979). A biologic model of parasystole. Am J Cardiol, 43: 761–772.

    Article  CAS  PubMed  Google Scholar 

  29. Jalife J, Slenter VAJ, Salata JJ, and Michaels DC (1983). Dynamic vagai control of pacemaker activity in the mammalian sinoatrial node. Circ Res, 52: 642–656.

    Article  CAS  PubMed  Google Scholar 

  30. Levy MN, Martin PJ, Lano TH, and Zieske H (1969). Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ Res, 25: 303–314.

    Article  CAS  PubMed  Google Scholar 

  31. Bleeker WK, MacKay AJC, Masson-Pevet M, Bouman LN, and Becker AE (1980). Functional and morphological organization of the rabbit sinus node. Circ Res, 46: 11–22.

    Article  CAS  PubMed  Google Scholar 

  32. Winfree AT (1980). The Geometry of Biological Time. New York, Springer-Verlag.

    Google Scholar 

  33. Jalife J and Michaels DC (1985). Phase dependent interactions of cardiac pacemakers as machanisms of control and sychronization in the heart. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology and Arrhythmias. Orlando, FL: Grune and Stratton, pp. 109–119.

    Google Scholar 

  34. Jalife J (1984). Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit sino-atrial pacemaker cells. J Physiol (London), 221-243: 1984.

    Google Scholar 

  35. Brown G and Eccles J (1934). The action of a single vagai volley on the rhythm of the heart beat. J Physiol (Lond), 82: 211–241.

    CAS  Google Scholar 

  36. Michaels DC, Matyas EP, and Jalife J (1984). A mathematical model of the vagal control of sinoatrial pacemaker activity. Circ Res, 55: 89–101.

    Article  CAS  PubMed  Google Scholar 

  37. Mobley BA and Page E (1972). The surface area of sheep cardiac Purkinje fibers. J Physiol, 220: 547–563.

    CAS  PubMed  Google Scholar 

  38. Michaels DC, Matyas EP al, and Jalife J (1989). Experimental and mathematical observations on pacemaker interactions as a mechanisms of synchronization in the sinoatrial node. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W.B. Saunders Co., pp. 182–214.

    Google Scholar 

  39. Wit AL and Rosen MR (1989). Cellular electrophysiological mechanisms of cardiac arrhythmias. In: MacFarlane PW, Veitch TD and Lawrie (eds). Comprehensive Electrocardiology:Theory and Practice in Health and Disease (vol 2). New York: Pergamon Press, pp. 801–841.

    Google Scholar 

  40. Bauernfeind RA, Amat-y-Leon F, Dhingra RC, et al. (1979). Chronic nonparoxysmal sinus tachycardia in otherwise health persons. Ann Intern Med, 91: 702–710.

    CAS  PubMed  Google Scholar 

  41. Yee R, Guiraudon GM, Gardner MJ, Gulamhusein SS, and Klein GJ (1984). Refractory paroxysmal sinus tachycardia: Management by subtotal right atrial exclusion. JACC, 3: 400–404.

    CAS  PubMed  Google Scholar 

  42. Kalman JM, Lee RJ, Fisher WG, Chin MC, Urseli P, Stillson CA, Lesh MD, and Scheinman MM (1995). Radiofrequency catheter modification of sinus pacemaker function guided by intracardiac echocardiography. Circulation, 92: 3070–3081.

    Article  CAS  PubMed  Google Scholar 

  43. Lee RJ, Kalman JM, Fitzpatrick AP, Epstein LM, Fisher WG, Olgin JE, Lesh MD, and Scheinman MM (1995). Radiofrequency catheter modification of the sinus node for “inappropriate” sinus tachycardia. Circulation, 92: 2919–2928.

    Article  CAS  PubMed  Google Scholar 

  44. Castellanos A, Moleiro F, Saoudi NC, and Myerburg RJ (1990). Parasystole. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology from Cell to Bedside. Philadelphia: W. B. Saunders Company, pp. 619–627.

    Google Scholar 

  45. Gardner PI, Ursell PC, Fenoglio JJ Jr, and Wit AL (1985). Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation, 72: 596–611.

    Article  CAS  PubMed  Google Scholar 

  46. Ursell PC, Gardner PI, Albala A, Fenoglio JJ Jr, and Wit AL (1985). Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res, 56: 436–451.

    Article  CAS  PubMed  Google Scholar 

  47. Lesh MD, Spear JF, and Moore EN (1990). Myocardial anisotropy: Basic electrophysiology and role in cardiac arrhythmias. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: W. B. Saunders Company, pp. 364–376.

    Google Scholar 

  48. Spach MS (1995). Microscopic basis of anisotropic propagation in the heart: The nature of current flow at a cellular level. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 204–215.

    Google Scholar 

  49. Keener JP and Panfilov AV (1995). Three-dimensional propagation in the heart: The effects of geometry and fiber orientation on propagation in myocardium. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 335–347.

    Google Scholar 

  50. Wikswo JP (1995). Tissue anisotropy, the cardiac biodomain, and the virtual cathode effect. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 348–362.

    Google Scholar 

  51. Wit AL, Dillon SM, and Coromilas J (1995). Anisotropic reentry as a cause of ventricular tachycarrhythmias. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 511–526.

    Google Scholar 

  52. Draper MH and Mya-Tu M (1959). A comparison of the conduction velocity in cardiac tissues of various mammals. Quar J Exp Physiol, 44: 91–109.

    CAS  Google Scholar 

  53. Schoenberg M, Dominguez G, and Fozzard HA (1975). Effect of diameter on membrane capacity and conductance of sheep cardiac Purkinje fibers. J Gen Physiol, 65: 441–458.

    Article  CAS  PubMed  Google Scholar 

  54. Pressler ML (1984). Cable analysis in quiescent and active sheep Purkinje fibres. J Physiol (Lond), 352: 739–757.

    CAS  Google Scholar 

  55. Goldstein SS and Rall W (1974). Changes in action potential shape and velocity for changing core conductor geometry. Biophys J, 14: 731–757.

    Article  CAS  PubMed  Google Scholar 

  56. Sepulveda NG, Walker CF, and Heath RG (1983). Finite element analysis of current pathways with implanted electrodes. J Biomed Eng, 5: 41–48.

    Article  CAS  PubMed  Google Scholar 

  57. Spach MS, Miller WT, Geselowitz DB, Barr RC, Kootsey JM, and Johnson EA (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect membrane currents. Circ Res, 48: 39–54.

    Article  CAS  PubMed  Google Scholar 

  58. Spach MS, Miller WT, Dolber PC, Kootsey JM, Sommer JR, and Mosher CE Jr (1982). The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res, 50: 175–191.

    Article  CAS  PubMed  Google Scholar 

  59. Spach MS and Dolber PC: Relating extracellular potentials (1986). Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res, 58: 356–371.

    Article  CAS  PubMed  Google Scholar 

  60. Spach MS and Dolber PC (1990). Discontinuous anisotropic propagation. In: Rosen M, Janse MJ and Wit AL (eds). Cardiac Electrophysiology: A Textbook. Mt Kisco: Futura Publishing Company, pp. 517–534.

    Google Scholar 

  61. Spach MS, Dolber PC, and Heidlage JF (1990). Properties of Discontinuous Anisotropic Propagation at a Microscopic Level. Ann NY Acad Sci, 591: 62–74.

    Article  CAS  PubMed  Google Scholar 

  62. Spach MS, Dolber PC, and Heidlage JF (1988). Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Circ Res, 62: 811–832.

    Article  CAS  PubMed  Google Scholar 

  63. Sommer JR and Johnson EA (1979). Ultrastructure of cardiac muscle. In: Berne RM (ed). The Handbook of Physiology, I: The Cardiovascular System. Baltimore: The American Physiological Society, Williams and Wilkins, pp. 113–186.

    Google Scholar 

  64. Gourdie RG, Green CR, and Severs NJ (1991). Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy. J Cell Sci, 99: 41–55.

    PubMed  Google Scholar 

  65. Gourdie RG, Green CR, Severs NJ, and Thompson RP (1992). Immunolabeling patterns of gap junction connexins in the developing and mature rat heart. Anat Embryol (Berlin), 185: 363–378.

    Article  CAS  Google Scholar 

  66. Hoyt RH, Cohen ML, and Saffitz JE (1989). Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ Res, 64: 563–574.

    Article  CAS  PubMed  Google Scholar 

  67. Sommer JR and Scherer B (1985). The geometry of intercellular communication in cardiac muscle with emphasis on cell and bundle appositions. Am J Physiol, 17: H792-H803.

    Google Scholar 

  68. Pressler ML, Munster PN, and Huang X (1995). Gap junction distribution in the heart: Functional Relevance. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 144–181.

    Google Scholar 

  69. Kootsey JM (1991). Electrical Propagation in Distributed Cardiac Tissue. In: Glass L, Hunter P and McCulloch A (eds). Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York: Springer, pp. 391–403.

    Google Scholar 

  70. Luke RA and Safitz JE (1991). Remodeling of Ventricular Conduction Pathways in Healed Canine Infarct Border Zones. J Clin Invest, 87: 1594–1602.

    Article  CAS  PubMed  Google Scholar 

  71. Smith JH, Green CR, Peters NS, Rothery S, and Severs NJ (1991). Altered patterns of gap junction distribution in ischemic heart disease. Am J Pathol, 139: 801–821.

    CAS  PubMed  Google Scholar 

  72. Spach MS (1991). Anisotropic Structural Complexities in the Genesis of Reentrant Arrhythmias (Editorial Comment). Circulation, 84: 1447–1450.

    Article  CAS  PubMed  Google Scholar 

  73. Lewis MA and P Grindrod: One-way blocks in cardiac tissue (1991). A mechanism for propagation failure in Purkinje fibers. Bull Math Biol, 53: 881–899.

    CAS  PubMed  Google Scholar 

  74. Mendez C, Mueller WJ, and Urquiaga X (1970). Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart. Circulation, 26: 135–150.

    Article  CAS  Google Scholar 

  75. Veenstra RD, Joyner RW, and Rawling DA (1984). Purkinje and ventricular activation sequences of canine papillary muscle. Circ Res, 54: 500–515.

    Article  CAS  PubMed  Google Scholar 

  76. Balke CW, Lesh MD, Spear JF, Kadish A, Levine JH, and Moore EN (1988). Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium. Circ Res, 63: 879–892.

    Article  CAS  PubMed  Google Scholar 

  77. Delgado C, Steinhaus B, Delmar M, Chialvo DR, and Jalife J (1990). Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circ Res, 67: 97–110.

    Article  CAS  PubMed  Google Scholar 

  78. Delmar M, Michaels DC, Johnson T, and Jalife J (1987). Effects of Increasing Intercellular Resistance on Transverse and Longitudinal Propagation in Sheep Epicardial Muscle. Circ Res, 60: 780–785.

    Article  CAS  PubMed  Google Scholar 

  79. Kleber AG and Janse MJ (1990). Impulse Propagation in Myocardial Ischemia. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 1st). Philadelphia: W. B. Saunders, pp. 156–161.

    Google Scholar 

  80. Kleber AG, Fleischhauer J, and Cascio WE (1995). Ischemia-induced propagation failure in the heart. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 174–181.

    Google Scholar 

  81. Anumonwo JMB, Delmar M, Vinet A, Michaels DC, and Jalife J (1991). Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ Res, 68: 1138–1153.

    Article  CAS  PubMed  Google Scholar 

  82. Weingart R and Maurer P (1988). Action potential transfer in cell pairs isolated from adult rat and guinea pig ventricles. Circ Res, 63: 72–80.

    Article  CAS  PubMed  Google Scholar 

  83. Weingart R, Rüdisüli A, and Maurer P (1990). Cell to cell communication. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 1st). Philadelphia: W. B. Saunders, pp. 122–127.

    Google Scholar 

  84. Smith JM and Cohen RJ (1984). Simple finite-element model accounts for wide range of cardiac dysrhythmias. Proc Natl Acad Sci USA, 81: 233–237.

    Article  CAS  PubMed  Google Scholar 

  85. Buchanan JW and Gettes LS (1990). Ionic Environment and Propagation. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: Saunders, pp. 149–156.

    Google Scholar 

  86. Hiramatsu Y, Buchanan JW, Knisley SB, and Gettes LS (1988). Rate-dependent effects of hypoxia on internal longitudinal resistance in guinea pig papillary muscles. Circ Res, 63: 923–929.

    Article  CAS  PubMed  Google Scholar 

  87. Maurer P and Weingart R: Cell pairs isolated from adult guinea pig (1987). effects of [Ca++]i on nexal membrane resistance. Pflugers Arch, 409: 394–402.

    Article  CAS  PubMed  Google Scholar 

  88. Jongsma HJ, Wilders R, van Ginneken ACG, and Rook MB (1991). Modulatory effect of the transcellular electrical field on gap junction conductance. In: Peracchia C (ed). Biophysics of Gap Junction Channels. Boca Raton: CRC Press, pp. 163–172.

    Google Scholar 

  89. Veenstra RD (1991). Physiological modulation of cardiac gap junction channels. J Cardiovasc Electrophysiol, 2: 168–189.

    Article  Google Scholar 

  90. Spach MS, Kootsey JM, and Sloan JD (1982). Active modulation of electrical coupling between cardiac cells of the dog. A mechanism for transient and steady state variations in conduction velocity. Circ Res, 51: 347–362.

    Article  CAS  PubMed  Google Scholar 

  91. Waldo AL, Maclean WAH, Karp RB, Kochoukos NT, and James T (1977). Entrainment and interruption of atrial flutter with pacing; Studies in man following open heart surgery. Circulation, 56: 737–745.

    Article  CAS  PubMed  Google Scholar 

  92. Waldo AL (1995). Atrial flutter: Mechanisms, clinical feture and management. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 2nd). Philadelp;hia: W. B. Saunders Company, pp. 666–681.

    Google Scholar 

  93. Stevenson WG, Sager PT, and Friedman PL (1995). Entrainment techniques for mapping atrial and ventricular tachycardias. [Review]. J Cardiovas Electrophys, 6: 201–216.

    Article  CAS  Google Scholar 

  94. Cosio FG, Arribas F, Lopez-Gil M, and Palacios J (1996). Atrial flutter mapping and ablation. I. Studying atrial flutter mechanisms by mapping and entrainment. [Review] [39 refs]. PACE, 19: 841–853.

    CAS  Google Scholar 

  95. Blanck Z, Dhala A, Deshpande S, Sra J, Jazayeri M, and Akhtar M (1994). Catheter ablation of ventricular tachycardia. [Review]. Am Heart J, 127: 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  96. Jazayeri MR, Deshpande S, Dhala A, Blanck Z, Sra J, and Akhtar M (1994). Transcatheter mapping and radiofrequency ablation of cardiac arrhythmias. [Review]. Current Problems in Cardiology, 19: 287–395.

    CAS  PubMed  Google Scholar 

  97. Stevenson WG (1995). Catheter mapping of ventricular tachycardia. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 2nd). Philadelphia: W. B. Saunders Company, pp. 1093–1112.

    Google Scholar 

  98. Klein LS and Miles WM (1995). Ablative therapy for ventricular arrhythmias. [Review] [51 refs]. Progr Cardiovasc Dis, 37: 225–242.

    Article  CAS  Google Scholar 

  99. Poty H, Saoudi N, Haissaguerre M, Daou A, Clementy J, and Letac B (1996). Radiofrequency catheter ablation of atrial tachycardias. Am Heart J, 131: 481–489.

    Article  CAS  PubMed  Google Scholar 

  100. Kalman JM, Olgin JE, Karch MR, and Lesh MD (1996). Regional entrainment of atrial fibrillation in man. J Cardiovas Electrophys, 7: 867–876.

    Article  CAS  Google Scholar 

  101. Okumura K, Olshansky B, Henthorn RW, Epstein AE, Plumb VJ, and Waldo AL (1987). Demonstration of the presence of slow conduction during sustained ventricular tachycrdia in man: Use of transient entrainment of the tachycardia. Circulation, 75: 369–378.

    Article  CAS  PubMed  Google Scholar 

  102. Henthorn RW, Okumura K, Olshansky B, Plumb VJ, Hess PG, and Waldo AL (1988). A fourth criteria for transient entrainment: The electrogram equivalent of progressive fusion. Circulation, 77: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  103. Watson RM and Josephson ME (1980). Atrial flutter. I. Electrophysiologic substrates and modes of initiation and termination. Am J Cardiol, 45: 732–741.

    Article  CAS  PubMed  Google Scholar 

  104. Inoue H, Matsuo H, Takayanagi K, and Murao S (1981). Clinical and experimental studies of the effects of atrial extrastimulation and rapid pacing on the atrial flutter cycle. Evidence of macro-reentry with an excitable gap. Am J Cardiol, 48: 623–631.

    Article  CAS  PubMed  Google Scholar 

  105. Disertori M, Inama G, Vergara G, Guarniera M, Del Favero A, and Furlanello F (1983). Evidence of a reentry circuit in the common type of atrial flutter in man. Circulation, 67: 434–440.

    Article  CAS  PubMed  Google Scholar 

  106. Klein GJ, Guiraudon GM, Sharma AD, and Milstein S (1986). Demonstration of macroreentry and feasibility of operative therapy in the common type of atrial flutter. Am J Cardiol, 57: 587–591.

    Article  CAS  PubMed  Google Scholar 

  107. Cosio FG, Arribas F, and Barbero MJ (1988). Validation of double-spike electrograms as markers of conduction delay or block in atrial flutter. Am J Cardiol, 61: 775–780.

    Article  CAS  PubMed  Google Scholar 

  108. Kalman JM, Olgin JE, Saxon LA, Fisher WG, Lee RJ, and Lesh MD (1996). Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter [see comments]. Circulation, 94: 398–406.

    Article  CAS  PubMed  Google Scholar 

  109. Nakagawa H, Lazzara R, Khastgir T, Beckman KJ, McClelland JH, Imai S, Pitha JV, Becker AE, Arruda M, Gonzalez MD, Widman LE, Rome M, Neuhauser J, Wang X, Calarne JD, Goudeau MD, and Jackman WM (1996). Role of the tricuspid annulus and the eustachian valve/ridge on atrial flutter. Relevance to catheter ablation of the septal isthmus and a new technique for rapid identification of ablation success [see comments]. Circulation, 94:407–424.

    Article  CAS  PubMed  Google Scholar 

  110. Lesh MD, Kalman JM, and Olgin JE (1996). New approaches to treatment of atrial flutter and tachycardia. [Review]. J Cardiovas Electrophys, 7: 368–381.

    Article  CAS  Google Scholar 

  111. Chu E, Kalman JM, Kwasman MA, Jue JC, Fitzgerald PJ, Epstein LM, Schiller NB, Yock PG, and Lesh MD (1994). Intracardiac echocardiography during radiofrequency catheter ablation of cardiac arrhythmias in humans. JACC, 24: 1351–1357.

    CAS  PubMed  Google Scholar 

  112. Olgin JE, Kalman JM, Fitzpatrick AP, and Lesh MD (1995). Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter. Activation and entrainment mapping guided by intracardiac echocardiography. Circulation, 92: 1839–1848.

    CAS  Google Scholar 

  113. Spach MS, Miller WT, Geselowitz DB, Barr RC, Kootsey JM, and Johnson EA (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect membrane currents. Circ Res, 48: 39–54.

    Article  CAS  PubMed  Google Scholar 

  114. Armen RN and Frank TV (1949). Electrocardiographic patterns in pneumothorax. Diseases of the Chest, 15: 709.

    Article  CAS  PubMed  Google Scholar 

  115. Simonson E (1961). Differentiation Between Normal and Abnormal in Electrocardiography. St. Louis, C.V. Mosby.

    Google Scholar 

  116. Morady F, Scheinman MM, Kou WH, Griffin JC, Dick M 2d, Herre J, Kadish AH, and Langberg J (1989). Long-term results of catheter ablation of a posteroseptal accessory atrioventricular connection in 48 patients. Circulation, 79: 1160–1170.

    Article  CAS  PubMed  Google Scholar 

  117. Kalman JM, Olgin JE, Saxin LA, Lee RJ, Scheinman MM, and Lesh MD (1997). Electrocardiographic and electrophysiologic characterization of atypical atrial flutter in man: Use of activation and entrainment mapping and implications for catheter ablation. J Cardiovas Electrophys, 8: 121–144.

    Article  CAS  Google Scholar 

  118. McGuire MA, Bourke JP, Robotin MC, Johnson DC, Meldrum-Hanna W, Nunn GR, Uther JB, and Ross DL (1993). High resolution mapping of Koch’s triangle using sixty electrodes in humans with atrioventricular junctional (AV nodal) reentrant tachycardia. Circulation, 88: 2315–2328.

    Article  CAS  PubMed  Google Scholar 

  119. McGuire MA, Janse MJ, and Ross DL (1993). “AV nodal” reentry: Part II: AV nodal, AV junctional, or atrionodal reentry? J Cardiovas Electrophys, 4:573–586.

    Article  CAS  Google Scholar 

  120. Schmitt C, Miller JM, and Josephson ME (1988). Atrioventricular nodal supraventricular tachycardia with 2:1 block above the the bundle of His. PACE, 11: 1018–1023.

    Google Scholar 

  121. Weh S-J, Yamamoto T, Lin F-C, and Wu D (1990). Atrioventricular block in the atypical form of junctional reciprocating tachycardia: Evidence supporting the atrioventricular node as the site of reentry. JACC, 15: 385–392.

    Google Scholar 

  122. Jackman WM, Nakagawa H, Heidbuchel H, Beckman K, McClelland J, and Lazzara R (1995). Three forms of atrioventricular nodal (junctional) reentrant tachycardia: Differential diagnosis, electrophysiological characteristics and implications for anatomy of the reentrant circuit. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed Second). Philadelphia: W. B. Saunders Company, pp. 620–637.

    Google Scholar 

  123. Moe GK, Preston JB, and Burlington HJ (1956). Physiologic evidence for a dual A-V transmission system. Circ Res, 4: 357–375.

    Article  CAS  PubMed  Google Scholar 

  124. Denes P, Wu D, Dhringra RD, Chuquimia R, and Rosen KM (1973). Demonstration of dual A-V nodal pathways in patients with paroxysmal supraventricular tachycardia. Circulation, 48: 549.

    Article  CAS  PubMed  Google Scholar 

  125. Janse MJ, van Capelle FJL, Freud GE, and Durrer D (1971). Circus movement within the AV node as a basis for supraventricular as shown by microelectrode recording in the isolated rabbit heart. Circ Res, 28: 403–414.

    Article  CAS  PubMed  Google Scholar 

  126. Ho SY, Kilpatrick L, Kanai T, Germroth PG, Thompson RP, and Anderson RH (1995). The architecture of the atrioventricular conduction axis in dog compared to man: its significance to ablation of the atrioventricular nodal approaches. J Cardiovas Electrophys, 6: 26–39.

    Article  CAS  Google Scholar 

  127. Anderson RH, Ho SY, Wharton J, and Becker AE (1995). Gross anatomy and microscopy of the conducting system. In: Mandel WJ (ed). Cardiac Arrhythmias (ed 3rd). Philadelphia: J. B. Lippincott Company, pp. 13–54.

    Google Scholar 

  128. DeMello (1977). Passive electrical properties of the atrio-ventricular node. Pfluegers Arch, 371: 135–139.

    Article  CAS  Google Scholar 

  129. DeFelice LJ and Challice CE (1969). Anatomical and ultrastructural study of the electrophysiological atrioventricular node of the rabbit. Circ Res, 24:457–474.

    Article  CAS  PubMed  Google Scholar 

  130. Kawamura K and James TN (1971). Comparative ultrastructure of cellular junctions in working myocardium and the conduction system under normal and pathologic conditions. J Mol Cell Cardiol, 3: 31–60.

    Article  CAS  PubMed  Google Scholar 

  131. Marino TA (1979). The atrioventricular node and bundle in the ferret heart: A light and quantitative electron microscopic study. Am J Anat, 154: 365–392.

    Article  CAS  PubMed  Google Scholar 

  132. Mendez C and Moe GK (1966). Some characteristics of transmembrane potentials of AV nodal cells during propagation of premature beats. Circ Res, 19: 993–1010.

    Article  Google Scholar 

  133. Roy D, Waxman HL, Boxton AE, and Josephson ME (1983). Horizontal and longitudinal dissociation of the A-V node during atrial tachycardia. PACE, 6: 569–576.

    Article  CAS  PubMed  Google Scholar 

  134. Gallagher JJ, Sealy WC, Kasell J, and Wallace AG (1984). Multiple accessory pathways in patients with the pre-excitation syndrome. Circulation, 54: 571–591.

    Article  Google Scholar 

  135. Bardy GH, Packer DL, German LD, and Gallagher JJ (1984). Preexcited reciprocating tachycardia in patients with Wollf-Parkinson-White syndrome: Incidence and mechanisms. Circulation, 70: 377–391.

    Article  CAS  PubMed  Google Scholar 

  136. Ward DE, Bennett DH, and Camm J (1984). Mechanisms of junctional tachycardia showing ventricular pre-excitation. Br Heart J, 52: 369–376.

    Article  CAS  PubMed  Google Scholar 

  137. Pritchett ELC, Prystowsky EN, Benditt DG, and Gallagher (1980). “Dual atrioventricular nodal pathways” in patients with Wolff-Parkinson-White syndrome. Br Heart J, 43: 7–13.

    Article  CAS  PubMed  Google Scholar 

  138. Smith WM, Broughton A, Reiter MJ, Benson DW Jr, Grant AO, and Gallagher JJ (1983). Bystander accessory pathway during AV node reentrant tachycardia. PACE, 6: 537–547.

    Article  CAS  PubMed  Google Scholar 

  139. Coumel P and Attuel P (1974). Reciprocating tachycardia in overt and latent preexcitation: Influence of bundle branch block on the rate of the tachycardia. Eur J Cardiol, 1: 423–436.

    CAS  PubMed  Google Scholar 

  140. Barold SS and Coumel P (1977). Mechanisms of atrioventricular junctional tachycardia: Role of reentry and concealed accessory bypass tracts. Am J Cardiol, 39: 97–106.

    Article  CAS  PubMed  Google Scholar 

  141. Neus H, Schlepper M, and Thormann J (1975). Analysis of re-entry mechanisms in three patients with concealed Wolff-Parkinson-White syndrome. Circulation, 51: 75–81.

    Article  Google Scholar 

  142. Pritchett ELC, Gallagher JJ, Sealy WC, Anderson R, Campbell RW, Seller TD Jr, and Wallace AG (1978). Supraventricular tachycardia dependent upon accessory pathways in the absence of ventricular preexcitation. Am J Med, 64: 214–220.

    Article  CAS  PubMed  Google Scholar 

  143. Kuck KH, Friday KJ, and Kunze KP (1990). Sites of conduction block in accessory pathway conduction during the induction of orthodromic reciprocating tachycardias. Circulation, 82: 407–417.

    Article  CAS  PubMed  Google Scholar 

  144. Wellens HJJ and Durrer D (1973). Combined conduction distrubances in two AV pathways in patients with Wolff-Parkinson-White syndrome. Eur J Cardiol, 1: 23–28.

    CAS  PubMed  Google Scholar 

  145. Campbell RW, Smith RA, Gallagher JJ, Pritchett EL, and Wallace AG (1977). Atrial fibrillation in the preexcitation syndrome. Am J Cardiol, 40: 514–520.

    Article  CAS  PubMed  Google Scholar 

  146. Sung RJ, Castellanos A, Mallon SM, Bloom MG, Gelband H, and Myerburg RJ (Sep). Mechanisms of spontaneous alternation between reciprocating tachycardia and atrial flutter-fibrillation in the Wolff-Parkinson-White syndrome. Circulation 1977, 56: 409–416.

    Article  CAS  PubMed  Google Scholar 

  147. Fujimura O, Klein GJ, Yee R, and Sharma AD (1990). Mode of onset of atrial fibrillation in the Wolff-Parkinson-White syndrome: how important is the accessory pathway? JACC, 15: 1082–1086.

    CAS  PubMed  Google Scholar 

  148. Roark SF, McCarthy EA, Lee KL, and Pritchett EL (1901). Observations on the occurrence of atrial fibrillation in paroxysmal supraventricular tachycardia. American Journal of Cardiology 1986 Mar, 57: 571–575.

    Article  CAS  PubMed  Google Scholar 

  149. Sharma AD, Klein GJ, Guiraudon GM, and Milstein S (1985). Atrial fibrillation in patients with Wolff-Parkinson-White syndrome: incidence after surgical ablation of the accessory pathway. Circulation, 72: 161–169.

    Article  CAS  PubMed  Google Scholar 

  150. Wellens HJ (1994). Atrial fibrillation—the last big hurdle in treating supraventricular tachycardia [editorial; comment]. N Engl J Med, 331: 944–945.

    Article  CAS  PubMed  Google Scholar 

  151. Wathen M, Natale A, Wolfe K, Yee R, and Klein G (1993). Initiation of atrial fibrillation in the Wolff-Parkinson-White syndrome: the importance of the accessory pathway. Am Heart J, 125: 753–759.

    Article  CAS  PubMed  Google Scholar 

  152. Sung RJ (1983). Incessant supraventricular tachycardia. PACE, 6: 1306–1326.

    Article  CAS  PubMed  Google Scholar 

  153. Coumel P, Cabrol C, Fabiato A, Gourgon R, and Slama R (1967). Tachycardie permanent part rhythme reciproque. I. Preuves du diagnostic par stimulation auriculaire et ventriculaire. Arc Mal Coeur Vaiss, 60: 1830–1864.

    Google Scholar 

  154. Scheinman MM, Basu D, and Hollenberg M (1974). Electrophysiologic studies in patients with persistent atrial tachycardia. Circulation, 50: 266–273.

    Article  CAS  PubMed  Google Scholar 

  155. Gallagher JJ and Sealy WC (1978). The permanent form of junctional reciprocating tachycardia: Further elucidation of the underlying mechanism. Eur J Cardiol, 8: 413–430.

    CAS  PubMed  Google Scholar 

  156. Ward DE and Camm AJ (1982). Ventriculo-atrial conduction over accessory pathways exhibiting decremental properties. Eur Heart J, 3: 267–275.

    CAS  PubMed  Google Scholar 

  157. Okumura K, Henthorn RW, Epstein AE, Plumb JV, and Waldo AL (1986). “Incessant” atrioventricular (AV) reciprocating tachycardia utilizing left lateral AV bypass pathway with a long retrograde conduction time. PACE, 9: 332–342.

    Article  CAS  PubMed  Google Scholar 

  158. Critelli G, Gallagher JJ, Monda V, Coltorti F, Schedilo M, and Rossi L (1984). Anatomic and electrophysiologic substrate of the permanent form of junctional reciprocating tachycardia. JACC, 4: 610–610.

    Google Scholar 

  159. Lown B, Ganong SA, and Levine SA (1952). The syndrome of short P-R interval, normal QRS complex and paroxysmal rapid heart action. Circulation, 5: 693.

    Google Scholar 

  160. James TN (1961). Morphology of the human atrioventricular node with remarks pertinent to its electrophysiology. Am Heart J, 62: 756.

    Google Scholar 

  161. Denes P, Wu D, Amat-y-Leon F, Dhingra R, Wyndham CR, and Rosen KM (1977). The determinants of atrioventricular nodal re-entrance with premature atrial stimulation in patients with dual A-V nodal pathways. Circulation, 56: 253–259.

    Article  CAS  PubMed  Google Scholar 

  162. Benditt DG, Pritchett LC, Smith WM, Wallace AG, and Gallagher JJ (1978). Characteristics of atrioventricular conduction and the spectrum of arrhythmias in Lown-Ganong-Levine syndrome. Circulation, 57: 454–465.

    Article  CAS  PubMed  Google Scholar 

  163. Bauernfeind RA, Swiryn S, Strasberg B, Palileo E, Wyndham C, Duffy CE, and Rosen KM (1982). Analysis of anterograde and retrograde fast pathway properties in patients with dual atrioventricular nodal pathways: observations regarding the pathophysiology of the Lown-Ganong-Levine syndrome. Am J Cardiol, 49: 283–290.

    Article  CAS  PubMed  Google Scholar 

  164. Klein GJ, Guiraudon G, Guiraudon C, and Yee R (1994). The nodoventricular Mahaim pathway: an endangered concept? [editorial; comment]. [Review]. Circulation, 90: 636–638.

    Article  CAS  PubMed  Google Scholar 

  165. Wellens HJJ (1971). The preexcitation syndrome. In: Wellens HJJ (ed). Electrical Stimulation of the Heart. Baltimore, MD: University Park Press, pp. 97–109.

    Chapter  Google Scholar 

  166. Gillette PC, Garson A Jr, Cooley DA, and McNamara DG (1982). Prolonged and decremental antegrade conduction properties in right anterior accessory connections: Wide QRS antidromic tachycardia of left bundle branch block pattern without Wolff-Parkinson-White configuration in sinus rhythm. Am Heart J, 103: 66–74.

    Article  CAS  PubMed  Google Scholar 

  167. Klein GJ, Guiraudon GM, Kerr CR, Sharma AD, Yee R, Szabo T, and Wah JA (1988). “Nodoventricular” accessory pathway: evidence for a distinct accessory atrioventricular pathway with atrioventricular node-like properties. JACC, 11: 1035–1040.

    CAS  PubMed  Google Scholar 

  168. McClelland JH, Wang X, Beckman KJ, Hazlitt HA, Prior MI, Nakagawa H, Lazzara R, and Jackman WM (1994). Radiofrequency catheter ablation of right atriofascicular (Mahaim) accessory pathways guided by accessory pathway activation potentials. Circulation, 89: 2655–2666.

    Article  CAS  PubMed  Google Scholar 

  169. Cappato R, Schluter M, Mont L, and Kuck KH (1994). Anatomic, electrical, and mechanical factors affectingbipolar endocardial electrograms. Impact on catheter ablation of manifest left free-wall accessory pathways. Circulation, 90: 884–894.

    Article  CAS  PubMed  Google Scholar 

  170. Grogin HR, Lee RJ, Kwasman M, Epstein LM, Schamp DJ, Lesh MD, and Scheinman MM (1994). Radiofrequency catheter ablation of atriofascicular and nodoventricular Mahaim tracts [see comments]. Circulation, 90: 272–281.

    Article  CAS  PubMed  Google Scholar 

  171. Li HG, Klein GJ, Thakur RK, and Yee R (1994). Radiofrequency ablation of decremental accessory pathways mimicking “nodoventricular” conduction. Am J Cardiol, 74: 829–833.

    Article  CAS  PubMed  Google Scholar 

  172. Ursell PC, Gardner PL Albala A, Fenoglio JJJ, and Wit AL (1985). Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res, 56: 436–451.

    Article  CAS  PubMed  Google Scholar 

  173. Dillon SM, Allessie MA, Ursell PC, and Wit AL (1988). Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res, 63: 182–206.

    Article  CAS  PubMed  Google Scholar 

  174. Cardinal R, Vermuelen M, Shenasa M, Roberge F, Page P, Helie F, and Savard P (1988). Anisotropic conduction and functional dissociation of ischemic tissue during reentrant ventricular tachycardia in canine myocardial infarction. Circulation, 77: 1162–1176.

    Article  CAS  PubMed  Google Scholar 

  175. El-Sherif N, Smith RA, and Evans K (1981). Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res, 49: 255–265.

    Article  CAS  PubMed  Google Scholar 

  176. Kramer JB, Saffitz JE, and Witkowski FX (1985). Intramural reentry as a mechanism of ventricular tachycardia during evolving canine myocardial infarction. Circ Res, 56: 736–754.

    Article  CAS  PubMed  Google Scholar 

  177. DiMarco JP, Lerman BB, Kron IL, and Sellers TD (1985). Sustained ventricular tachyarrhythmias within 2 months of acute myocardial infarction: results of medical and surgical therapy in patients resuscitated from the initial episode. JACC, 6: 759–768.

    CAS  PubMed  Google Scholar 

  178. Wellens HJ, Duren DR, and Lie KI (1976). Observations on mechanisms of ventricular tachycardia in man. Circulation, 54: 237–244.

    Article  CAS  PubMed  Google Scholar 

  179. Josephson ME, Horowitz LN, Farshidi A, and Kastor JA (1978). Recurrent sustained ventricular tachycardia. 1. Mechanisms. Circulation, 57: 431–440.

    Article  CAS  PubMed  Google Scholar 

  180. Fisher JD, Cohen HL, Mehra R, Altschuler H, Excher DJ, and Furman S (1977). Cardiac pacing and pacemakers. II. Serial electrophysiologic testing for control of recurrent tachyarrhythmias. Am Heart J, 93: 658–668.

    Article  CAS  PubMed  Google Scholar 

  181. Cohen M, Wiener I, Pichard A, Holt J, Smith H Jr, and Gorlin R (1983). Determinants of ventricular tachycardia in patients with coronary artery disease and ventricular aneurysm. Am J Cardiol, 51: 61–64.

    Article  CAS  PubMed  Google Scholar 

  182. Wilensky RL, Yudelman P, Cohen AI, Fletcher RD, Atkinson J, Virmani R, and Roberts WC (1988). Serial electrocardiographic changes in idiopathic dilated cardiomyopathy confirmed at necropsy. Am J Cardiol, 62: 276–283.

    Article  CAS  PubMed  Google Scholar 

  183. Huang SK, Messer JV, and Denes P (1983). Significance of ventricular tachycardia in idiopathic dilated cardiomyopathy. Observations in 35 patients. Am J Cardiol, 51: 507–512.

    Article  CAS  PubMed  Google Scholar 

  184. Meinertz T, Hofmann T, Kasper W, Treese N, Bechtold H, Stienen U, Pop T, Leitner ER, Andresen D, and Meyer J (1984). Significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. Am J Cardiol, 53: 902–907.

    Article  CAS  PubMed  Google Scholar 

  185. Brigden W (1987). Hypertrophic cardiomyopathy. Brit Heart J, 58: 299–302.

    Article  CAS  PubMed  Google Scholar 

  186. McKenna WJ, Franklin RC, Nihoyannopoulos P, Robinson KC, and Deanfield JE (1988). Arrhythmia and prognosis in infants, children and adolescents with hypertrophic cardiomyopathy. JACC, 11: 147–153.

    CAS  PubMed  Google Scholar 

  187. Fananapazir L, Tracy CM, Leon MB, Winkler JB, Cannon RO 3d, Bonow RO, Maron BJ, and Epstein SE (1989). Electrophysiologic abnormalities in patients with hyperrophic cardiomyopathy. A consecutive analysis in 155 patients. Circulation, 80: 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  188. Spirito P, Chiarella F, Carratino L, Berisso MZ, Bellotti P, and Vecchio C (1989). Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med, 320: 749–755.

    Article  CAS  PubMed  Google Scholar 

  189. Maron BJ, Bonow RO, Cannon RO, Leon MB, and Epstein SE (1987). Hypertrophic cardiomyopathy: Interrelations of clinical manifestations, pathophysiology and therapy (Part 1). N Engl J Med, 316: 780–789.

    Article  CAS  PubMed  Google Scholar 

  190. Maron BJ, Bonow RO, Cannon RO, Leon MB, and Epstein SE (1987). Hypertrophic cardiomyopathy: Interrelations of clinical manifestations, pathophysiology and therapy (Part 2). N Engl J Med, 316: 844–852.

    Article  CAS  PubMed  Google Scholar 

  191. Shakespeare CF, Keeling PJ, Slade AK, and McKenna WJ (1992). Arrhythmia and hypertrophic cardiomyopathy. Archives des Maladies du Coeur et des Vaisseaux, 85 Spec No 4: 31–36.

    Google Scholar 

  192. Kuck KH, Kunze KP, Schluter M, Nienaber CA, and Costard A (1988). Programmed electrical stimulation in hypertrophic cardiomyopathy. Results in patients with and without cardiac arrest or syncope. [Review]. Eur Heart J, 9: 177–185.

    CAS  PubMed  Google Scholar 

  193. Kuck KH, Kunze KP, Geiger M, Costard A, and Schluter M (1987). Programmed electrical stimulation in patients with hypertrophic cardiomyopathy. Zeitschrift fur Kardiologie, 76: 131–136.

    PubMed  Google Scholar 

  194. Kowey PR, Eisenberg R, and Engel TR (1984). Sustained arrhythmias in hypertrophic obstructive cardiomyopathy. N Engl J Med, 310: 1566–1569.

    Article  CAS  PubMed  Google Scholar 

  195. Doyd EA, Zipes DP, Heger JJ, and Prystowsky EN (1982). Sustained ventricular tachycardia due to bundle branch reentry. Am Heart J, 104: 1095–1097.

    Article  Google Scholar 

  196. Caceres J, Jazayeri M, McKinnie J, Avitall B, Denker ST, Tchou P, and Akhtar M (1989). Sustained bundle branch reentry as a mechanism of clinical tachycardia. Circulation, 79: 256–270.

    Article  CAS  PubMed  Google Scholar 

  197. Brooks R and Burgess JH (1988). Idiopathic ventricular tachycardia. Medicine, 67: 271–294.

    Article  CAS  PubMed  Google Scholar 

  198. Parkinson J and Papp C (1942). Repetitive paroxysmal tachycardia. Br Heart J, 10: 241–262.

    Google Scholar 

  199. Buxton AE, Waxman LH, Marchlinski FE, Simson MB, Cassidy D, and Josephson ME (1983). Right ventricular tachycardia: Clinical and electrophysiologic characteristics. Circulation, 5: 917–927.

    Article  Google Scholar 

  200. Coumel P, Leclerq JP, and Slama R (1985). Repetitive monomorphic idiopathic ventricular tachycardia. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology and Arrhythmias. Orlando, FL: Grane and Stratton, pp. 455–466.

    Google Scholar 

  201. Kinoshita O, Fontaine G, Rosas F, Elias J, Iwa T, Tonet J, Lascault G, and Frank R (1995). Time-and frequency-domain analyses of the signal-averaged ECG in patients with arrhythmogenic right ventricular dysplasia. Circulation, 91: 715–721.

    Article  CAS  PubMed  Google Scholar 

  202. Ritchie AH, Kerr CR, Qi A, and Yeung-Lai-Wah JA (1989). Nonsustained ventricular tachycardia arising from the right ventricular outflow tract. Am J Cardiol, 63: 594–598.

    Article  Google Scholar 

  203. Mont L, Sexas T, Bragada P, Simonis F, Kriek E, Smeets JL, and Wellens HJ (1992). The electrocardiographic, clinical and electrophysiologic spectrium of idiopathic monomorphic ventricular tachycardia. Arn Heart J, 124: 746–753.

    Article  CAS  Google Scholar 

  204. Lerman BB, Belardinelli L, West GA, Berne RM, and DiMarco JP (1986). Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation, 74: 270–280.

    Article  CAS  PubMed  Google Scholar 

  205. Zipes DP, Foster PR, Troup PJ, and Pederson DH (1979). Atrial induction of ventricular tachycardia: Reentry versus triggered activity. Am J Cardiol, 44:1–8.

    Article  CAS  PubMed  Google Scholar 

  206. Belhassen B, Rotmensch HH, and Laniado S (1981). Response of recurrent sustained ventricular tachycardia to verapamil. Br Heart J, 46: 679–682.

    Article  CAS  PubMed  Google Scholar 

  207. Okumura K, Matsuyama K, Miyagi H, Tsuchiya T, and Yasue H (1988). Entrainment of idiopathic ventricular tachycardia of left ventricular origin with evidence for reentry with an area of slow conduction and effect of verapamil. Am J Cardiol, 62: 727–732.

    Article  CAS  PubMed  Google Scholar 

  208. Ward DE, Nathan AW, and Camm AJ (1984). Fascicular tachycardia sensitive to calcium antagonists. Eur Heart J, 5: 896–905.

    Article  CAS  PubMed  Google Scholar 

  209. Touboul P, Saoudi N, Atallah G, and Kirkorian G (1989). Electrophysiologic basis of catheter ablation in atrial flutter. Am J Cardiol, 64: 79J-85J.

    Google Scholar 

  210. Olshansky B, Okumura K, Hess PG, and Waldo AL (1990). Demonstration of an area of slow conduction in human atrial flutter. JACC, 16: 1639–1648.

    CAS  PubMed  Google Scholar 

  211. Cosio FG. Lopez GM, Goicolea A, and Arribas F (1992). Electrophysiologic studies in atrial flutter. Clin Cardiol, 61: 667–673.

    Article  Google Scholar 

  212. Feld G, Fleck KP, Chen PS, Boyce K, Bahnson T, Stein JB, Calisi CM, and Ibarra M (1992). Radiofrequency catheter ablation for the treatment of human type I atrial flutter. Identification of a critical zone in the reentrant circuit by endocardial mapping techniques. Circulation, 86: 1233–1240.

    Article  CAS  PubMed  Google Scholar 

  213. Kirkorian G, Moncada E, Chevalier P, Canu G, Claudel JP, Bellon C, Lyon L, and Touboul P (1994). Radiofrequency ablation of atrial flutter. Efficacy of an anatomically guided approach. Circulation, 90: 2804–2814.

    Article  CAS  PubMed  Google Scholar 

  214. Poty H, Saoudi N, Abdel Aziz A, Nair M, and Letac B (1995). Radiofrequency catheter ablation of type 1 atrial flutter. Prediction of late success by electrophysiological criteria. Circulation, 92: 1389–1392.

    Article  CAS  PubMed  Google Scholar 

  215. Cauchemez B, Haissaguerre M, Fischer B, Thomas O, Clementy J, and Coumel P (1996). Electrophysiologic effects of catheter ablation of inferior vena cava-tricuspid annulus isthmus in common atrial flutter. Circulation, 93:284–294.

    Article  CAS  PubMed  Google Scholar 

  216. Nath S, Mounsey JP, Haines DE, and DiMarco JP (1995). Predictors of acute and long-term success after radiofrequency catheter ablation of type 1 atrial flutter. Am J Cardiol, 76: 604–606.

    Article  CAS  PubMed  Google Scholar 

  217. Steinberg JS, Prasher S, Zelenkofske S, and Ehlert FA (1995). Radiofrequency catheter ablation of atrial flutter: procedural success and long-term outcome. Am Heart J, 130: 85–92.

    Article  CAS  PubMed  Google Scholar 

  218. Fischer B, Haissaguerre M, Garrigues S, Poquet F, Gencel L, Clementy J, and Marcus FI (1995). Radiofrequency catheter ablation of common atrial flutter in 80 patients. JACC, 25: 1365–1372.

    CAS  PubMed  Google Scholar 

  219. Chen SA, Chiang CE, Wu TJ, Tai CT, Lee SH, Cheng CC, Chiou CW, Ueng KC, Wen ZC, and Chang MS (1996). Radiofrequency catheter ablation of common atrial flutter: Cpmparision of electrophysiologically guided focal ablation technique and linear ablation technique. JACC, 27: 860–868.

    CAS  PubMed  Google Scholar 

  220. Ferguson TB Jr and Cox JL (1995). Surgery for atrial fibrillation. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 2nd). Philadelphia: W.B. Saunders Company, p. 1567.

    Google Scholar 

  221. Leitch JW, Klein G, Yee R, and Guiraudon G (1991). Sinus node-atrioventricular node isolation: Long term results with the “corridor” operation for atrial fibrillation. JACC, 17: 970–975.

    CAS  PubMed  Google Scholar 

  222. van Hemel NM, Defauw JJ, Kingma JH, Jaarsma W, Vermeulen FE, de Bakker JM, and Guiraudon GM (1994). Long-term results of the corridor operation for atrial fibrillation [see comments]. Brit Heart J, 71: 170–176.

    Article  PubMed  Google Scholar 

  223. Cox JL (1993). Evolving applications of the maze procedure for atrial fibrillation. Ann Thorac Surg, 55: 578–580.

    Article  CAS  PubMed  Google Scholar 

  224. Cox JL, Boineau JP, Schuessler RB, Kater KM, and Lappas DG (1993). Five Year experience with the maze procedure for atrial fibrillation. Ann Thorac Surg, 56: 814–823.

    Article  CAS  PubMed  Google Scholar 

  225. Kosakai Y, Kawaguchi AT, Isobe F, Sasako Y, Nakano K, Eishi K, Kito Y, and Kawashima Y (1993). Modified maze procedures for patients with atrial fibrillation undergoing simultaneous open heart surgery. Circulation, 92: 11-359–364.

    Article  Google Scholar 

  226. Sandoval N, Velasco VM, Orjuela H, Caicedo V, Santos H, Rosas F, Carrea JR, Melgarejo I, and Morillo CA (1996). Concomitant mitral valve or atrial septal defect surgery and the modified Cox-maze procedure. Am J Cardio], 77:591–596.

    Article  CAS  Google Scholar 

  227. Swartz JF, Lellersels G, Silvers J, et al. (1994). A catheter-based curative approach to atrial fibrillation in humans. Circulation, 90: 1–335.

    Article  Google Scholar 

  228. Haissaguerre M, Gencel L, Fischer B, Le Metayer P, Poquet F, Marcus FI, and Clementy J (1994). Successful catheter ablation of atrial fibrillation. J Cardiovas Electrophys, 5: 1045–1052.

    Article  CAS  Google Scholar 

  229. Kim YH, O’Nunain S, Ruskin JN, and Garan H (1993). Nonpharmacologic therapies in patients with ventricular tachyarrhythmias. Catheter ablation and ventricular tachycardia surgery. [Review]. Cardiology Clinics, 11: 85–96.

    CAS  PubMed  Google Scholar 

  230. Josephson ME (1993). Clinical Cardiac Electrophysiology: Techniques and Interpretations (ed 2nd). Philadelphia, Lea & Febiger.

    Google Scholar 

  231. D’Avila A, Nellens P, Andries E, and Bragada P (1994). Catheter ablation of ventricular tachycardia occurring late after myocardial infarction: a point-of-view. [Review]. Pace-Pacing & Clinical Electrophysiology, 17: 532–541.

    Article  CAS  Google Scholar 

  232. Prystowsky EN and Klein GJ (1994). Cardiac Arrhythmias: An Integrated Approach for the Clinician. New York, McGraw-Hill,Inc.

    Google Scholar 

  233. Borggrefe M, Chen X, Hindricks G, Haverkamp W, Willems S, Kottkamp H, Rotman B, Martinez-Rubio A, Shenasa M, Block M, and Breithardt G (1995). Catheter ablation of ventricular tachycardia in patients with coronary heart disease. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 2nd). Philadelphia: W. B. Saunders Company, pp. 1502–1517.

    Google Scholar 

  234. Fitzgerald DM, Friday KJ, Wah JA, Lazzara R, and Jackman WM (1988). Electrogram patterns predicting successful catheter ablation of ventricular tachycardia. Circulation, 77: 806–814.

    Article  CAS  PubMed  Google Scholar 

  235. Garan H and Ruskin JN (1988). Reproducible termination of ventricular tachycardia by a single extrastimulus within the reentry circuit during the ventricular effective refractory period. Am Heart J, 116: 546–550.

    Article  CAS  PubMed  Google Scholar 

  236. Morady F, Frank R, Kou WH, Tonet JL, Nelson SD, Kounde S, De Buitleir M, and Fontaine G (1988). Identification and catheter ablation of a zone of slow conduction in the reentrant circuit of ventricular tachycardia in humans. JACC, 11: 775–782.

    CAS  PubMed  Google Scholar 

  237. Stevenson WG, Khan H, Sager P, Saxon LA, Middlekauff HR, Natterson PD, and Wiener I (1993). Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia. Circulation, 88: 1647–1670.

    Article  CAS  PubMed  Google Scholar 

  238. Stevenson WG, Sager PT, Natterson PD, Saxon LA, Middlekauff HR, and Wiener I (1995). Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. JACC, 26: 481–488.

    CAS  PubMed  Google Scholar 

  239. Josephson ME, Waxman HL, Cain ME, Gardner MJ, and Buxton AE (1982). Ventricular activation during ventricular endocardial pacing. II: role of pace-mapping to localize origin of ventricular tachycardia. Am J Cardiol, 50: 11–20.

    Article  CAS  PubMed  Google Scholar 

  240. Kuchar DL, Ruskin JN, and Garan H (1989). Electrocardiographic localization of the site of origin of ventricular tachycardia in patients with prior myocardial infarction. JACC, 13: 893–903.

    CAS  PubMed  Google Scholar 

  241. Evans GT, Scheinman MM, and Zipes DP (1986). The percutaneous cardiac mapping and ablation registry: summary of results. Pace-Pacing & Clinical Electrophysiology, 9: 923–926.

    Article  CAS  Google Scholar 

  242. Gonska BD, Cao K, Schaumann A, Dorszewski A, von zur Muhlen F, and Kreuzer H (1994). Catheter ablation of ventricular tachycardia in 136 patients with coronary artery disease: results and long-term follow-up. JACC, 24: 1506–1514.

    CAS  PubMed  Google Scholar 

  243. Gonska BD, Cao K, Schaumann A, Dorszewski A, von zur Muhlen F, and Kreuzer H (1994). Management of patients after catheter ablation of ventricular tachycardia. [Review]. Pace-Pacing & Clinical Electrophysiology, 17: 542–549.

    Article  CAS  Google Scholar 

  244. Tchou P, Jazayeri M, Denker S, Dongas J, Caceres J, and Akhtar M (1988). Transcatheter electrical ablation of right bundle branch. A method of treating macroreentrant ventricular tachycardia attributed to bundle branch reentry. Circulation, 78: 246–257.

    Article  CAS  PubMed  Google Scholar 

  245. Wilber DJ, Baerman J, Olshansky B, Kall J, and Kopp D (1993). Adenosine sensitive ventricular tachycardia: Clinical characteristics and response to catheter ablation. Circulation, 87: 126–134.

    Article  CAS  PubMed  Google Scholar 

  246. Nakagawa H, Beckman KJ, McClelland JH, Wang X, Arruda M, Santoro I, Hazlitt HA, Abdalla I, Singh A, Gossinger H, et al. (1993). Radiofrequency catheter ablation of idiopathic left ventricular tachycardia guided by a Purkinje potential. Circulation, 88: 2607–2617.

    Article  CAS  PubMed  Google Scholar 

  247. Klein LS, Miles WM, Hackett FK, and Zipes DP (1992). Catheter ablation of ventricular tachycardia using radiofrequency techniques in patients without structural heart disease. Herz, 17: 179–189.

    CAS  PubMed  Google Scholar 

  248. Wen MS, Yeh SJ, Wang CC, Lin FC, Chen IC, and Wu D (1994). Radiofrequency ablation therapy in idiopathic left ventricular tachycardia with no obvious structural heart disease. Circulation, 89: 1690–1696.

    Article  CAS  PubMed  Google Scholar 

  249. Kottkamp H, Kindricks G, Chen X, Brunn J, Willems S, Haverkamp W, Block M, Breithardt G, and Borggrefe M (1995). Radiofrequency catheter ablation of sustained ventricular tachycardia in idiopathic dilated cardiomyopathy. Circulation, 92: 1159–1168.

    Article  CAS  PubMed  Google Scholar 

  250. Lawrie GM and Pacifico A (1995). Surgery for ventricular tachycardia. In: Zipes DP and Jalife J (eds). Cardiac Electrophysiology: From Cell to Bedside (ed 2nd). Philadelphia: W. B. Saunders, pp. 1547–1552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walmor C. De Mello Michiel J. Janse

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnsdorf, M.F., Dudley, S.C. (1998). Gap Junctions, Cardiac Excitability and Clinical Arrhythmias. In: De Mello, W.C., Janse, M.J. (eds) Heart Cell Communication in Health and Disease. Developments in Cardiovascular Medicine, vol 200. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5525-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5525-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7525-8

  • Online ISBN: 978-1-4615-5525-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics