Skip to main content

Neuron-Glia Ensembles and Mammalian CNS Lesion Repair

  • Chapter
Understanding Glial Cells

Abstract

Damage to the CNS breaks the physical and functional boundaries of the nervous tissue, disrupts the interactions between neural cells, and destroys both the neurons and the connections in which they are involved. At the beginning of the century, Cajal showed that damaged CNS did not regenerate spontaneously, an observation supported by subsequent morphological studies. However, at the same time, it was observed that adult CNS “rejuvenated” in response to injury. Mechanical trauma, stroke and many degenerative diseases, evoke developmental capabilities in the adult CNS, such as glial proliferation and differentiation, axonal sprouting and synaptogenesis. CNS response to injury is best understood as the response of neuron-glia ensembles. These ensembles have properties that, unaided, are capable of correcting minor CNS lesions. We believe that, adequately controlled, these properties could also permit to correct the consequences of major CNS injury. True regeneration, i.e. the restitution of the CNS to its pre-injury state, is clearly impossible in the absence of neuronal division. However, we think that functional repair can be achieved. The present chapter describes, within the above context, the work carried in our laboratory regarding: i) Brain inhibitors of astrocyte and astrocytoma proliferation, ii) Inhibitors of neurite outgrowth in reactive glia and iii) Enhancement of nerve fiber regeneration by olfactory bulb ensheathing glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad-Rodríguez, J. and Nieto-Sampedro, M. (1993) Purification from bovine brain of an inhibitor of astrocyte an C6 glioma cell division. Eur. J. Neurosci. supp. 6: 23.

    Google Scholar 

  • Aguayo, A.J., Vidal-Sanz, M., Villegas-Pérez, M.P., y Bray, G.M. (1987) Growth and connectivity of axotomized retinal neurons in adult rat with optic nerves substituted by PNS grafts linking the eyes and midbrain. Ann. N.Y. Acad.Sci. 495: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Arenander, A. y de Vellis, J. (1983) Frontiers of Glial Physiology. In The Clinical Neurosciences (R. Rosenberg, ed., section V). Churchill Livingstone, New York, pp.53–91.

    Google Scholar 

  • Balentine, J.D. (1978) Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin. Lab. Invest., 39: 254–266.

    PubMed  CAS  Google Scholar 

  • Bovolenta, P., Wandosell, F. y Nieto-Sampedro, M.(1992) CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Progress Brain Res. 94: 367–379.

    Article  CAS  Google Scholar 

  • Bovolenta, P., Wandosell, F. and Nieto-Sampedro, M. (1993a) Characterization of a neurite outgrowth inhibitor expressed after CNS injury. Eur. J. Neurosci., 5: 454–465.

    Article  PubMed  CAS  Google Scholar 

  • Bovolenta, P., Fernaud-Espinosa, I., Méndez-Otero, R. and Nieto-Sampedro, M. (1997) Neurite outgrowth inhibitor of gliotic brain tissue. Mode of action and cellular localization studied with specific monoclonal antibodies. Eur. J. Neurosci., in press.

    Google Scholar 

  • Carlstedt, T., S. Cullheim, M. Risling, and B. Ulfhake (1989) Nerve fibre regeneration across the PNS-CNS interface at the root-spinal cord junction. Brain Res. Bull. 22: 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H., Cao, Y. and Olson, L. (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273: 510–513.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C.W., Nieto-Sampedro, M. y Harris, E. W. (1981) Synapse replacement in the nervous system of adult vertebrates. Physiol. Rev. 61: 684–784.

    PubMed  CAS  Google Scholar 

  • Cotman, C.W. and Nieto-Sampedro, M. (1984) Cell biology of synaptic plasticity. Science 225: 1287–1294.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S. y Smith, S.J. (1990) Glutamate induces Ca2+ waves in cultured astrocytes: long range glial signalling. Science 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  • De la Torre, J.C. (1982) Catecholamine fiber regeneration accross a collagen bio-implant after spinal cord transection. Brain Res. Bull. 9: 545–552.

    Article  PubMed  Google Scholar 

  • Fernaud-Espinosa, I., Nieto-Sampedro, M. and Bovolenta, P. (1993) Differential activation of microglia and astrocytes in aniso-and iso-morphic gliotic tissue. Glia 8: 277–291.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J. (1991). Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14: 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Gearhart, J., Oster-Granite, M.L., and Guth, L. (1979) Histological changes after transection of the spinal cord of fetal and neonatal mice. Exp. Neurol. 66: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, J.G. (1958) General pathology of nerve cell and neuroglia. In: Neuropathology. (Greenfield, J.G., Blackwood, W., Meyer, A., McMenemey, W.H., Norman, R.M. eds.) Ed. Arnold, Ltd. London, pp 1–66.

    Google Scholar 

  • Gudiño-Cabrera, G. and Nieto-Sampedro, M. (1996) Ensheathing cells: Large scale purification from adult olfactory bulb, freeze-preservation and migration of transplanted cells in adult brain. Restor. Neurol. Neurosci.: 10: 25–34.

    PubMed  Google Scholar 

  • Hoffman, P.N. (1995) The synthesis, axonal transport and phosphorylation of neurofilaments determine axonalcaliber in myelinated nerve fibers. The Neuroscientist. 1: 76–83.

    Article  CAS  Google Scholar 

  • Kao, C.C. and Chang, L.W. (1977) The mechanism of spinal cord cavitation following spinal cord transection. Part 1: A correlative histochemical study. J. Neurosurg. 46: 197–206.

    Article  Google Scholar 

  • Klatzo, I. (1967) Neuropathological aspects of brain edema. J. Neuropathol. Exp. Neurol. 26: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. (1982) Developmental neurobiology and the natural history of nerve growth factor. Annu. Rev. Neurosci. 5: 341–362.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. M. (1994) Increased expression of the NG2 chondroitin sulfate proteoglycan after brain injury. J. Neurosci. 14: 4716–4730.

    PubMed  CAS  Google Scholar 

  • Li, Y., Field, P.M. and Raisman G. (1997) Repair of adult corticospinal tract by transplants of olfactory ensheathing cells. Science 277: 2000–2002.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C. (1995) LTP and LTD: Dynamic and interactive processes of synaptic plasticity. The Neuroscientist. 1: 35–42.

    Article  Google Scholar 

  • Mattson, M.P., Rydel, R.E., Lieberburg, I., and Smith-Swintowsky, V.L. (1993) Altered calcium signaling and neuronal injury: stroke and Alzheimer’s disease as examples. Ann. N.Y. Acad. Sci. 679: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Microglia: Special Issue. (1993) Glia 7(1) pp.1–120.

    Article  Google Scholar 

  • Millaruelo, A. I., M. Nieto-Sampedro and C. W. Cotman (1988). Cooperation between NGF and laminin or fibronectin in promoting sensory neuron survival and neurite outgrowth. Dev. Brain Res. 38: 219.228.

    Article  Google Scholar 

  • Nedergaard, M. (1994) Direct signalling from astrocytes to neurons in cultures of mammalian brain cells. Science 263: 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S. y Cotman, C.W. (1983) Injury-induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity. J. Neurosci. 3: 2219–2229.

    PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M. (1988a) Growth factor induction and order of events in CNS repair. In Pharmacological approaches to the treatment of brain and spinal cord injury. (eds. D.G. Stein and B.A. Sabel). Plenum Press, New York, pp.301–337.

    Chapter  Google Scholar 

  • Nieto-Sampedro, M. (1988b) Astrocyte mitogen inhibitor related to epidermal growth factor receptor. Science 240: 1784–1786.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M. and Broderick, J.T. (1989) A soluble brain molecule related to epidermal growth factor receptor is a mitogen inhibitor for astrocytes. J. Neurosci. Res., 22:.28–35.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M. and Abad-Rodríguez, J. (1995) Inhibidores de la division glial. Rev. Neurol. 23: 605.

    Google Scholar 

  • Nieto-Sampedro, M., Bailón, C., Fernandez Mayoralas, A., Martín-Lomas, M., Mellström, B. and Naranjo, J.R. (1996) Experimental brain glioma: growth arrest and destruction by a blood-group-related tetrasaccharide. J. Neuropathol. Exp. Neurol. 55: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S. y Haydon, P.G. (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369: 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Pope, A. (1978) Neuroglia: Quantitative aspects. En Dynamic properties of glial cells (E. Schoffeniels y F.G. Tower, eds.) New York, Pergamon Press, pp. 13–20.

    Google Scholar 

  • Ramón y Cajal, S. (1914) Estudios sobre la degeneración y regeneración del sistema nervioso. Imprenta Hijos de Nicolás Moya, Madrid.

    Google Scholar 

  • Ramón-Cueto, A. y Nieto-Sampedro, M. (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp. Neurol. 127: 232–244.

    Article  PubMed  Google Scholar 

  • Reier, P.J., Stensaas, L.J. and Guth, L. (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Spinal Cord Reconstruction (C.C. Kao, R.P. Bunge and P.J. Reier, eds.), Raven Press, New York, pp. 163–195.

    Google Scholar 

  • Rudge, J.S. (1993) Astrocyte-derived neurotrophic factors. In: Astrocytes. Pharmacology and function (S. Murphy, ed.) Acad. Press, San Diego, pp.267–305.

    Google Scholar 

  • Schulman, H. (1995) Protein phosphorylation in neuronal plasticity and gene expression. Curr. Opinion Neurobiol. 5: 375–381.

    Article  CAS  Google Scholar 

  • Siegal, J. D., M. Kliot, G. M. Smith, and J. Silver (1990). A comparison of the regeneration potential of dorsal root fibers into gray or white matter of the adult rat spinal cord. Exp. Neurol. 109: 90–97.

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer, H. (1995) Glial influences on neuronal signalling. The Neuroscientist 1: 123–126.

    Article  Google Scholar 

  • Williams, E.J., Furtness, J., Walsh, F.S., and Doherty, P. (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM and N-cadherin. Neuron 13: 583–594.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nieto-Sampedro, M. (1998). Neuron-Glia Ensembles and Mammalian CNS Lesion Repair. In: Castellano, B., González, B., Nieto-Sampedro, M. (eds) Understanding Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5737-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5737-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7628-6

  • Online ISBN: 978-1-4615-5737-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics