Skip to main content

Shortest Path Algorithms In Transportation Models: Classical and Innovative Aspects

  • Chapter
Equilibrium and Advanced Transportation Modelling

Part of the book series: Centre for Research on Transportation ((CRT))

Abstract

Shortest Path problems are among the most studied network flow optimization problems. Since the end of the 1950’s, more than two thousand scientific works have been published in the literature, most of them in journals and conference proceedings concerning general combinatorial optimization on graphs, but also in numerous specialized journals. One of the most interesting application fields is transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, R. K., T. L. Magnanti and J. B. Orlin (1993). Network Bows: Theory, algorithms, and applications. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Ahuja, R.K., K. Mehlhorn, J. B. Orlin and R. E. Tarjan (1990). “Faster algorithms for the shortest path problem”. Journal of ACM 37, 213–223.

    Article  Google Scholar 

  • Bazaraa, M.S. and R. W. Langley (1974). “A dual shortest path algorithm”. SIAM Journal on Applied Mathematics 26, 496–501.

    Article  Google Scholar 

  • Bellman, R. (1958). “On a routing problem”. Quarterly Applied Mathematics 16, 87–90.

    Google Scholar 

  • Bertsekas, D.P. (1991a). “An Auction algorithm for shortest paths”. SIAM Journal on Optimization 1, 425–447.

    Article  Google Scholar 

  • Bertsekas, D.P. (1991b). Linear network optimization: Algorithms and codes. M.I.T. Press, Cambridge, MA.

    Google Scholar 

  • Bertsekas, D. P. (1993). “A simple and fast label correcting algorithm for shortest paths”. Networks 23, 703–709.

    Article  Google Scholar 

  • Bertsekas, D. P., S. Pallottino and M. G. Scutellà (1995). “Polynomial Auction algorithms for shortest paths”. Computational Optimization and Applications 4, 99–125.

    Article  Google Scholar 

  • Bertsekas, D. P. and J. N. Tsitsiklis (1989). Parallel and distributed computation — Numerical methods. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Chabini, I. (1996). “Fastest routes in temporal networks revisited”. Presented at Optimization Days, Montreal, May 1996.

    Google Scholar 

  • Chabini, I. (1997). “A new algorithm for shortest paths in discrete dynamic networks”. Proc. 8th IFAC Symposium on Transportation Systems, Chania, Greece, 551–556.

    Google Scholar 

  • Cherkassky, B. V., A. V. Goldberg and T. Radzik (1996). “Shortest paths algorithms: Theory and experimental evaluation”. Mathematical Programming 73, 129–174.

    Google Scholar 

  • Cooke, L. L. and E. Halsey (1966). “The shortest *route through a network with time-dependent internodal transit times”. Journal of Mathematical Analysis and Applications 14, 492–498.

    Google Scholar 

  • De La Barra, T. (1989). Integrated land use and transport modelling. Cambridge University Press.

    Google Scholar 

  • De Palma, A., P. Hansen and M. Labbé (1993). “Commuters’ paths with penalties for early or late arrival times”. Transportation Science 24, 276–286.

    Article  Google Scholar 

  • Delia Valle, G. and D. Tartaro (1994). “Ricerca dei percorsi di minimo costo mediante un algoritmo ibrido in presenza di penalità di svolta”. Ricerca Operativa 24, 5–38.

    Google Scholar 

  • Denardo, E. V. and B. L. Fox (1979a). “Shortest-route methods: 1. Reaching, pruning, and buckets”. Operations Research 27, 161–186.

    Article  Google Scholar 

  • Denardo, E. V. and B. L. Fox (1979b). “Shortest-route methods: 2. Group knapsacks, expanded networks, and branch-and-bound”. Operations Research 27, 548–566.

    Article  Google Scholar 

  • Deo, N. and C. Pang (1984). “Shortest path algorithms: Taxonomy and annotation”. Networks 14, 275–323.

    Article  Google Scholar 

  • Desrochers, M. and F. Soumis (1988). “A generalized permanent labelling algorithm for the shortest path problem with time windows”. INFOR 26, 191–212.

    Google Scholar 

  • Desrosiers, J., P. Pelletier and F. Soumis (1983). “Plus court chemin avec contraintes d’horaires”. R.A.I.R.O. 17, 357–377.

    Google Scholar 

  • Dial, R. B. (1969). “Algorithm 360: Shortest path forest with topological ordering”. Communications of the ACM 12, 632–633.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs”. Numerishe Matematik 1, 269–271.

    Article  Google Scholar 

  • Dionne, R. (1978). “Étude et extension d’un algorithme de Murchland”. INFOR 16, 132–146.

    Google Scholar 

  • Dreyfus, S. E. (1969). “An appraisal of some shortest-path algorithms”. Operations Research 17, 395–412.

    Article  Google Scholar 

  • Florian, M., S. Nguyen and S. Pallottino (1981). “A dual simplex algorithm for finding all shortest paths”. Networks 11, 367–378.

    Article  Google Scholar 

  • Ford Jr., L. R. (1956). Network flow theory. Rand Co., P-293.

    Google Scholar 

  • Fredman, M. L. and R. E. Tarjan (1987). “Fibonacci heaps and their uses in improved network optimization algorithms”. Journal of the ACM 34, 596–615.

    Article  Google Scholar 

  • Fujishige, S. (1981). “A note on the problem of updating shortest paths”. Networks 11, 317–319.

    Article  Google Scholar 

  • Gallo, G. (1980). “Reoptimization procedures in shortest path problems”. Rivista di Matematica per le Scienze Economiche e Sociali 3, 3–13.

    Article  Google Scholar 

  • Gallo, G., G. Longo, S. Nguyen and S. Pallottino (1992). “Directed hypergraphs and applications”. Discrete Applied Mathematics 40, 177–201.

    Google Scholar 

  • Gallo, G. and S. Pallottino (1982). “A new algorithm to find the shortest paths between all pairs of nodes”. Discrete Applied Mathematics 4, 23–35.

    Article  Google Scholar 

  • Gallo, G. and S. Pallottino (1984). “Shortest path methods in transportation models”. In (M. Florian, ed.) Transportation planning models, North-Holland, 227–256.

    Google Scholar 

  • Gallo, G. and S. Pallottino (1986). “Shortest path methods: A unifying approach”. Mathematical Programming Study 26, 38–64.

    Article  Google Scholar 

  • Gallo, G. and S. Pallottino (1988). “Shortest path algorithms”. Annals of Operations Research 13, 3–79.

    Article  Google Scholar 

  • Glover, F., R. Glover and D. Klingman (1984). “Computational study of an improved shortest path algorithm”. Networks 14, 25–36.

    Article  Google Scholar 

  • Glover, F., D. Klingman and N. Phillips (1985). “A new polynomially bounded shortest path algorithm”. Operations Research 33, 65–73.

    Article  Google Scholar 

  • Glover, F., D. Klingman, N. Phillips and R. F. Schneider (1985). “New polynomial shortest path algorithms and their computational attributes”. Management Science 31, 1106–1128.

    Article  Google Scholar 

  • Goldberg, A. V. and T. Radzik (1993). “A heuristic improvement of the Bellman-Ford algorithm”. Applied Mathematics Letters 6, 3–6.

    Article  Google Scholar 

  • Handler, G. Y. and I. Zang (1980). “A dual algorithm for the constrained shortest path problem”. Networks 10, 293–310.

    Article  Google Scholar 

  • Hansen, P. (1980). “Bicriterion path problems”. In (G. Fandel and T. Gal, eds.) Multicriteria decision making: theory and applications, Lecture Notes in Economics and Mathematical Systems 177, Springer, Heidelberg, 109–127.

    Chapter  Google Scholar 

  • Hung, M. S. and J. J. Divoky (1988). “A computational study of efficient shortest path algorithms”. Computers and Operations Research 15, 567–576.

    Article  Google Scholar 

  • Israeli, Y. and A. Ceder (1996). “Multi-objective approach for designing transit routes with frequencies”. In (L. Bianco and P. Toth, eds.) Advanced methods in transportation analysis, Springer, Berlin, 157–182.

    Chapter  Google Scholar 

  • Johnson, D. B. (1973a). Algorithms for shortest paths. Ph.D. Thesis, Cornell University, tr-73-169.

    Google Scholar 

  • Johnson, D. B. (1973b). “A note on Dijkstra’s shortest path algorithm”. Journal of the ACM 20(3), 385–388.

    Article  Google Scholar 

  • Johnson, E. L. (1972). “On shortest paths and sorting”. Proc. 25th ACM Annual Conference, 510–517.

    Google Scholar 

  • Kaufman, D. E. and R. L. Smith (1993). “Fastest paths in time-dependent networks for intelligent vehicle-highway systems applications”. IVHS Journal 1, 1–11.

    Google Scholar 

  • Kershenbaum, A. (1981). “A note on finding shortest path trees”. Networks 11, 399–400.

    Article  Google Scholar 

  • Kirby, R. F. and R. B. Potts (1969). “The minimum route problem for networks with turn penalties and prohibitions”. Transportation Research 3, 397–408.

    Article  Google Scholar 

  • Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. Holt, Rine-hart and Winston, New York, NY.

    Google Scholar 

  • Marcotte, P. and S. Nguyen (1997). “A hyperpath formulation of capacitated traffic assignment”. Proc. Equilibrium and advanced transportation modelling colloquium, this book.

    Google Scholar 

  • Mondou, J.-F. (1989). “Mise au point d’un système interactif-graphique pour la planification tactique du transport des marchandises”. Mémoire de maîtrise, Publication CRT-677, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Mondou, J.-F., G. T. Crainic and S. Nguyen (1991). “Shortest path algorithms: A computational study with the C programming language”. Computers and Operations Research 18, 767–786.

    Article  Google Scholar 

  • Moore, E. F. (1959). “The shortest path through a maze”. Proc. International Symposium on Theory of Switching, part 2, Harvard University Press, 285–292.

    Google Scholar 

  • Mote, J., I. Murthy and D. Olson (1991). “A parametric approach to solving bicriterion shortest path problems”. European Journal of Operational Research 53, 81–92.

    Article  Google Scholar 

  • Murchland, J. D. (1970). A fixed matrix method for all shortest distances in a directed graph and for the inverse problem. Ph.D. Thesis, University of Karlsruhe.

    Google Scholar 

  • Nachtigall, K. (1995). “Time depending shortest-path problems with applications to railway networks”. European Journal of Operational Research 83, 154–166.

    Article  Google Scholar 

  • Nguyen, S. and S. Pallottino (1986). “Assegnamento dei passeggeri ad un sistema di linee urbane: determinazione degli ipercammini minimi”. Ricerca Operativa 38, 29–74.

    Google Scholar 

  • Nguyen, S. and S. Pallottino (1988). “Equilibrium traffic assignment for large scale transit networks”. European Journal of Operational Research 37, 176–186.

    Article  Google Scholar 

  • Nguyen, S. and S. Pallottino (1989). “Hyperpaths and shortest hyperpaths”. In (B. Simeone, ed.) Combinatorial optimization, Lecture Notes in Mathematics 1403, Springer-Verlag, Berlin, 258–271.

    Chapter  Google Scholar 

  • Orda, A. and R. Rom (1990). “Shortest-path and minimum-delay algorithms in network with time-dependent edge length”. Journal of the ACM 37, 607–625.

    Article  Google Scholar 

  • Orda, A. and R. Rom (1991). “Minimum weight paths in time-dependent networks”. Networks 21, 295–320.

    Article  Google Scholar 

  • Pallottino, S. (1984). “Shortest path methods: Complexity, interrelations and new propositions”. Networks 14, 257–267.

    Article  Google Scholar 

  • Pallottino, S. and M. G. Scutellà (1991). “Strongly polynomial auction algorithms for shortest paths”. Ricerca Operativa 60, 33–53.

    Google Scholar 

  • Pallottino, S. and M. G. Scutellà (1997). “Dual algorithms for the shortest path tree problem”. Networks 29, 125–133.

    Article  Google Scholar 

  • Papadimitriou, C. H. and K. Steiglitz (1982). Combinatorial optimization: Algorithms and complexity. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Pape, U. (1974). “Implementation and efficiency of Moore-algorithms for the shortest route problem”. Mathematical Programming 7, 212–222.

    Article  Google Scholar 

  • Pretolani, D. (1997). Private communication.

    Google Scholar 

  • Safer, H. M. and J. B. Orlin (1995). “Fast approximation schemes for multi-criteria combinatorial optimization”. Sloan School of Management, Massachusetts Institute of Technology, Working Paper 3756–3795.

    Google Scholar 

  • Shier, D. R. and C. Witzgall (1981). “Properties of labeling methods for determining shortest path trees”. Journal of Research of the National Bureau of Standards 86, 317–330.

    Article  Google Scholar 

  • Steenbrink, P. A. (1974). Optimization of transport networks. J. Wiley, London.

    Google Scholar 

  • Tarjan, R. E. (1983). Data structures and network algorithms. SIAM, Philadelphia, PA.

    Book  Google Scholar 

  • Van Vliet, D. (1978). “Improved shortest path algorithms for transport networks”. Transportation Research 12, 7–20.

    Article  Google Scholar 

  • Warburton, A. R. (1984). “Bicriterion shortest path problems”. University of Ottawa, Faculty of Administration, Working Paper 84–127.

    Google Scholar 

  • Warburton, A. R. (1987). “Approximation of Pareto optima in multiple-objective shortest-path problems”. Operations Research 35, 70–79.

    Article  Google Scholar 

  • Ziliaskopoulos, A.K. (1994). Optimum path algorithms on multidimensional networks: Analysis, design, implementation and computational experience. Ph.D. Thesis, University of Texas at Austin.

    Google Scholar 

  • Ziliaskopoulos, A. K. and H. S. Mahmassani (1993). “Time-dependent, shortest-path algorithm for real-time intelligent vehicle highway system applications”. Transportation Research Record 1408, 94–100.

    Google Scholar 

  • Ziliaskopoulos, A. K. and H. S. Mahmassani (1996). “A note on least time path computation considering delays and prohibitions for intersection movements”. Transportation Research B 30B, 359–367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pallottino, S., Scutellà, M.G. (1998). Shortest Path Algorithms In Transportation Models: Classical and Innovative Aspects. In: Marcotte, P., Nguyen, S. (eds) Equilibrium and Advanced Transportation Modelling. Centre for Research on Transportation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5757-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5757-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7638-5

  • Online ISBN: 978-1-4615-5757-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics