Skip to main content

Cardiac sarcolemmal Na+-Ca2+ exchange and Na+-K+ ATPase activities and gene expression in alloxan-induced diabetes in rats

  • Chapter
Molecular and Cellular Effects of Nutrition on Disease Processes

Abstract

To determine the sequence of alterations in cardiac sarcolemmal (SL) Na+-Ca2+ exchange, Na+-K+ATPase and Ca2+-transport activities during the development of diabetes, rats were made diabetic by an intravenous injection of 65 mg/kg alloxan. SL membranes were prepared from control and experimental hearts 1–12 weeks after induction of diabetes. A separate group of 4 week diabetic animals were injected with insulin (3 U/day) for an additional 4 weeks. Both Na+-K+ ATPase and Ca2+-stimulated ATPase activities were depressed as early as 10 days after alloxan administration; Mg2+ ATPase activity was not depressed throughout the experimental periods. Both Na+-Ca2+ exchange andATPdependent Ca2+-uptake activities were depressed in diabetic hearts 2 weeks after diabetes induction. These defects in SL Na+-K+ ATPase and Ca-transport activities were normalized upon treatment of diabetic animals with insulin. Northern blot analysis was employed to compare the relative mRNA abundances of α1-subunit of Na+-K+ ATPase and Na+-Ca2+ exchanger in diabetic ventricular tissue vs. control samples. At 6 weeks after alloxan administration, a significant depression of the Na+-K+ ATPase α1- subunit mRNA was noted in diabetic heart. A significant increase in the Na+-Ca2+ exchanger mRNA abundance was observed at 3 weeks which returned to control by 5 weeks. The results from the alloxan-rat model of diabetes support the view that SL membrane abnormalities in Na+-K+ ATPase, Na+Ca2+ exchange and Ca2+-pump activities may lead to the occurrence of intracellular Ca2+overload during the development of diabetic cardiomyopathy but these defects may not be the consequence of depressed expression of genes specific for those SL proteins. (Mol Cell Biochem 188: 91–101, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dhalla NS, Pierce GN, Innes IR, Beamish RE: Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1: 263–281, 1985

    CAS  PubMed  Google Scholar 

  2. Schaffer SW: Cardiomyopathy associated with non-insulin-dependent diabetes. Mol Cell Biochem 107: 1–20, 1991

    Article  CAS  PubMed  Google Scholar 

  3. Yu Z, Quanme GA, McNeil JH: Depressed [Ca2+]; responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am J Physiol 266: H2334–H2342, 1994

    CAS  PubMed  Google Scholar 

  4. Ren J, Davidoff AJ: Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 272: H148–H158, 1997

    CAS  PubMed  Google Scholar 

  5. Xu YJ, Botsford MW, Panagia V, Dhalla NS: Responses of heart function and intracellular free Ca2+ to phosphatidic acid in chronic diabetes. Can J Cardiol 12: 1092–1098, 1996

    CAS  PubMed  Google Scholar 

  6. Ganguly PK, Pierce GN, Dhalla NS: Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244: E528–E535, 1983

    CAS  PubMed  Google Scholar 

  7. Lopaschuk GD, Tahiliani AG, Vadlamudi RVSV, Katz S, McNeil JH: Cardiac sarcoplasmic reticulum function in insulin-or carnitine-treated diabetic rats. Am J Physiol 245: H969–H976, 1983

    CAS  PubMed  Google Scholar 

  8. Makino N, Dhalla KS, Elimban V, Dhalla NS: Sarcolemmal Ca2+-transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253: E202–E207, 1987

    CAS  PubMed  Google Scholar 

  9. Takeda& N, Dixon IMC, Hata T, Elimban V, Shah K, Dhalla NS: Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Res Clin Prac 30(Suppl.): S113–S122, 1996

    Article  Google Scholar 

  10. Golfman LS, Takeda N, Dhalla NS: Cardiac membrane Ca2+-transport in alloxaninduced diabetes in rats. Diabetes Res Clin Prac 31(Suppl.): 573–577, 1996

    Google Scholar 

  11. Afzal N, Ganguly PK, Dhalla KS, Pierce GN, Singal PK, Dhalla NS: Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes 37: 936–942, 1988

    Article  CAS  PubMed  Google Scholar 

  12. Afzal N, Pierce GN, Elimban V, Beamish RE, Dhalla NS: Influence of verapamil on some subcellular defects in diabetic cardiomyopathy. Am J Physiol 256: E453–E458, 1989

    CAS  PubMed  Google Scholar 

  13. Fein FS, Miller-Green B, Sonnenblick EH: Altered myocardial mechanisms in diabetic rabbit. Am J Physiol 248: H729–H736, 1985

    CAS  PubMed  Google Scholar 

  14. Bhimji S, Godin DV, McNeill JH: Myocardial ultrastructural changes in alloxaninduced diabetes in rabbits. Acta Anat 125: 195–200, 1986

    Article  CAS  PubMed  Google Scholar 

  15. Vadlamudi RVSV, Rogers RL, Neill JH: The effect of chronic alloxan and streptozotocin induced diabetes on isolated rat heart performance. Can J Physiol Pharmacol 60: 902–911, 1982

    Article  CAS  PubMed  Google Scholar 

  16. Lopaschuk GD, Katz S, McNeill JH: The effect of alloxan and streptozotocin induced diabetes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involvement of long chain acylcarnitines. Can J Physiol Pharmacol 61: 439–448, 1984

    Article  Google Scholar 

  17. Golfman LS, Takeda N, Beamish RE, Dhalla NS: Cardiac contractile failure and ultrastructural abnormalities during the development of diabetic cardiomyopathy. In: N.S. Dhalla, R.E. Beamish, N. Takeda, M. Nagano (eds). The Failing Heart. Raven Press: NY, 1995, pp 131–161

    Google Scholar 

  18. Pierce GN, Beamish RE, Dhalla NS: Heart Dysfunction in Diabetes. CRC Press: Boca Raton, 1988, pp 23–50

    Google Scholar 

  19. Veleminsky J, Burr IM, Stauffacher W: Comparative study of early metabolic events resulting from the administration of the two diabetogenic agents alloxan and streptozotocin. Eur J Clin Invest 1: 104–108, 1970

    Article  CAS  PubMed  Google Scholar 

  20. Mansford KRL, Opie LH: Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocinor byalloxan. Lancet 1: 670–671, 1968

    Article  CAS  PubMed  Google Scholar 

  21. Bruckman G, Wertheimer E: The action of alloxan homologues and related compounds: Alloxan studies. J Biol Chem 168: 241–256, 1947

    Google Scholar 

  22. Vargus L, Friederici HHR, Maibeno HC: Cortical sponge kidneys induced in rats by alloxan. Diabetes 19: 33–37, 1970

    Google Scholar 

  23. Heimberg M, Dunkerley A, Brown TO: The effect on insulin and alloxan diabetes on hepatic transport of triglycerides and fatty acids. Biochem Pharmacol 14: 890–893, 1965

    Article  CAS  PubMed  Google Scholar 

  24. Heimberg M, Meng HC, Park CR: Effect of sex, fasting and alloxan diabetes on the uptake of neutral fat by isolated perfused rat liver. Am J Physiol 195: 673–677, 1958

    CAS  PubMed  Google Scholar 

  25. Pitts BJR: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254: 6232–6235, 1979

    CAS  PubMed  Google Scholar 

  26. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  27. Dixon IMC, Hata T, Eyolfson DA, Dhalla NS: Sarcolemmal Na+-Ca2+ exchange activity in hearts subject to hypoxia reoxygenation. Am J Physiol 253: H1026–H1034, 1987

    CAS  PubMed  Google Scholar 

  28. Kaneko M, Beamish RE, Dhalla NS: Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am J Physiol 256: H368–H374, 1989

    CAS  PubMed  Google Scholar 

  29. Seppet EK, Dhalla NS: Characteristics of Ca2+-stimulated ATPase in rat heart sarcolemma in the presence of dithiothreitol and alamethicin. Mol Cell Biochem 91: 137–147, 1989

    Article  CAS  PubMed  Google Scholar 

  30. Pierce GN, Dhalla NS: Mechanisms of the defect in cardiac myofibrillar function during diabetes. Am J Physiol 248: E170–E175, 1985

    CAS  PubMed  Google Scholar 

  31. Fabiato A: Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. In: S. Fleischer, B. Fleischer (eds). Methods in Enzymology. Academic Press: NY, 1988, pp 378–417

    Google Scholar 

  32. Norby JG: Coupled assay of Na+-K+ ATPase activity. In: S. Fleischer, B. Fleischer (eds). Methods in Enzymology. Academic Press: NY, 1988, pp 116–119

    Google Scholar 

  33. Taussky H, Shorr E: A microcaloric method for the estimation of inorganic phosphorous. J Biol Chem 202: 678–685, 1953

    Google Scholar 

  34. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987

    Article  CAS  PubMed  Google Scholar 

  35. Skou JC, Esmann M: The Na, K-ATPase. J Bioenerg Biomembr 24: 249–261, 1992

    CAS  PubMed  Google Scholar 

  36. Good PJ, Richter K, David IB: A nervous system-specific isotype of the beta subunit of Na+-K+ ATPase expressed during early development of Xenopus laevis. Proc Natl Acad Sci USA 87: 9088–9092, 1990

    Article  CAS  PubMed  Google Scholar 

  37. Lingrel JB, Orlowski J, Shull MM, Price EM: Molecular genetics of Na, K-ATPase. Prog Nucleic Acid Res Mol Biol 38: 37–89, 1990

    Article  CAS  PubMed  Google Scholar 

  38. Sweadner KJ: Isozymes of the Na+-K+ ATPase. Biochim Biophys Acta 988: 185–220, 1989

    Article  CAS  PubMed  Google Scholar 

  39. Horowitz B, Hensley CB, Quintero M, Azuma KK, Putman D, McDonough AA: Differential regulation of Na, K-ATPase alpha, alpha2 and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem 265: 14308–14314, 1990

    CAS  PubMed  Google Scholar 

  40. Ng Y-C, Yao AZ, Akera T: Tissue-specific isoform regulation of Na+-K+ ATPase by thyroid hormone in ferrets. Am J Physiol 257: H534–H539, 1989

    CAS  PubMed  Google Scholar 

  41. Ng Y-C, Tolerico PH, Book C-BS: Alterations in levels of Na+-K+ ATPase isoforms in heart, skeletal muscle and kidney of diabetic rats. Am J Physiol 265: E243–E251, 1993

    CAS  PubMed  Google Scholar 

  42. Zahler R, Gilmore HM, Baldwin JC, France K, Benz EJ, Jr: Expression of alpha isoforms of the Na, K-ATPase in human heart. Biochim Biophys Acta 1149: 189–194, 1993

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhury S, Ismail-Beigi FI, Gick GG, Levenson R, Edelman IS: Effect of thyroid hormone on the abundance of Na, K adenosine triphosphate alpha-subunit messenger. Mol Endocrinol 1: 83–89, 1987

    Article  CAS  PubMed  Google Scholar 

  44. Charlemagne D, Orlowski J, Oliviero P, Rannou F, Beuve CS, Swynghedanw B, Lane LK: Alteration of Na, K-ATPase subunit mRNA and protein levels in hypertrophied rat hearts. J Biol Chem 269: 1541–1547, 1994

    CAS  PubMed  Google Scholar 

  45. Magyar CE, Wang J, Azuma KK, McDonough AA: Reciprocal regulation of cardiac Na, K-ATPase and Na/Ca exchanger: Hypertension, thyroid hormone, development. Am J Physiol 269: C675–C682, 1995

    CAS  PubMed  Google Scholar 

  46. Pierce GN, Dhalla NS: Sarcolemmal Na+-K+ ATPase activity in diabetic rat heart. Am J Physiol 245: C241–C247, 1983

    CAS  PubMed  Google Scholar 

  47. Xiang H, McNeill JH: Protein kinase C activity is altered in diabetic rat hearts. Biochem Biophys Res Commun 187: 703–710, 1992

    Article  CAS  PubMed  Google Scholar 

  48. Ballard C, Mozaffari M, Schaffer S: Signal transduction mechanism for the stimulation of the sarcolemma Na+-Ca2+ exchanger by insulin. Mol Cell Biochem 135: 113–119, 1994

    Article  CAS  PubMed  Google Scholar 

  49. Zahler R, Sun W, Ardito T, Kash-Garian M: Na, K-ATPase a-isoform expression in heart and vascular endothelia: cellular and developmental regulation. Am J Physiol 70: C361–C371, 1996

    Google Scholar 

  50. Frank JS, Mottino G, Reid D, Molday REt, Philipson KD: Distribution of the Na+-Ca2+ exchange protein in mammalian cardiac myocytes: An immunofluorescence and immunocolloidal gold-labelling study. J Cell Biol 117: 337–345, 1992

    Article  CAS  PubMed  Google Scholar 

  51. Pierce GN, Kutryk MJB, Dhalla NS: Alterations in calcium binding and composition of the cardiac sarcolemmal membrane in chronic diabetes. Proc Natl Acad Sci USA 8: 5412–5416, 1983

    Article  Google Scholar 

  52. Onji L, Liu M-S: Effects of alloxan-diabetes on the sodium potassium adenosine triphosphate enzyme system in dog hearts. Biochem Biophys Res Commun 96: 799–804, 1980

    Article  CAS  PubMed  Google Scholar 

  53. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE: Calciummovements in relation to heart function. Basic Res Cardiol 77: 117–139, 1982

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Golfman, L., Dixon, I.M.C., Takeda, N., Lukas, A., Dakshinamurti, K., Dhalla, N.S. (1998). Cardiac sarcolemmal Na+-Ca2+ exchange and Na+-K+ ATPase activities and gene expression in alloxan-induced diabetes in rats. In: Pierce, G.N., Izumi, T., Rupp, H., Grynberg, A. (eds) Molecular and Cellular Effects of Nutrition on Disease Processes. Developments in Molecular and Cellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5763-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5763-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7641-5

  • Online ISBN: 978-1-4615-5763-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics