Skip to main content

Lysosomal Metabolism of Glycoconjugates

  • Chapter
Biology of the Lysosome

Part of the book series: Subcellular Biochemistry ((SCBI,volume 27))

Abstract

A variety of intracellular and extracellular glycoconjugates are degraded in the lysosomes of animal cells. The main groups are glycosaminoglycans, glycolipids, and glycoproteins. A portion of the cellular glycogen is also turned over in the lysosomes as a result of autophagy of cytoplasmic glycogen. The importance of the lysosomal catabolism of glycoconjugates for the normal functioning of cells and tissues is dramatically illustrated by the severe and often fatal lysosomal storage diseases that result from a genetic defect in the lysosomal catabolism of glycoconjugates. Under certain circumstances exogenous carbohydrate-containing material may be delivered to the lysosomes. This material is catabolized if the glycosidic linkages are susceptible to hydrolysis by the endogenous glycosidases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, D., Blakemore, W. F., Jolly, R. D., Sidebotham, R., and Winchester B., 1983, The catabo-lism of mammalian glycoproteins: Comparison of the storage products in bovine, feline and human mannosidosis, Biochem. J. 215:573–579.

    CAS  Google Scholar 

  • Aerts, J. M. F. G., Schram, A. W., Strijland, A., van Weely, S., Johnson, L. M. V., Tager, J. M., Sorrell, S. H., Ginns, E. I., Barranger, J. A., and Murray, G. J., 1988, Glucocerebrosidase, a lysosomal enzyme that does not undergo oligosaccharide phosphorylation, Biochim. Biophys. Acta 964: 303–308.

    CAS  Google Scholar 

  • Ahlberg, J., Berkenstam, A., Henell, F., and Glaumann, H., 1985, Degradation of short and long-lived proteins in isolated rat liver lysosomes; effects of pH, temperature and proteolytic inhibitors, J. Biol Chem. 260:5847–5854.

    CAS  Google Scholar 

  • Al Daher, S., De Gasperi, R., Daniel, P., Hall, N., Warren, C. D., and Winchester, B., 1991, The substrate-specificity of human lysosomal α-D-mannosidase in relation to genetic α-mannosidosis, Biochem. J. 277:743–751.

    Google Scholar 

  • Al Daher, S., De Gasperi, R., Daniel, P., Hirani, S., Warren, C., and Winchester, B., 1992, Substrate specificity of human liver neutral α-mannosidase, Biochem. J. 286:47–53.

    Google Scholar 

  • Ando, S. 1983, Gangliosides in the nervous system, Neurochem, Int. 5:507–537.

    CAS  Google Scholar 

  • Aronson, N. N., and Davidson, E. A., 1967, Lysosomal hyaluronidase from rat liver, J. Biol Chem. 242:437–440.

    CAS  Google Scholar 

  • Aronson, N. N., Backes, M., and Kuranda, M. J., 1989, Purification of rat liver chitobiosidase, Arch. Biochem. Biophys. 272:290–300.

    CAS  Google Scholar 

  • Baenziger, J., 1994, Protein-specific glycosyltransferases: How and why they do it! FASEB J. 8: 1019–1025.

    CAS  Google Scholar 

  • Barker, C., Dell, A., Rogers, M., Alhadeff, J. A., and Winchester, B., 1988, Canine α-L-fucosidase in relation to the enzymic defect and storage products in canine fucosidosis, Biochem. J. 254:861–868.

    CAS  Google Scholar 

  • Barnes, A. K., and Wynn, C. H., 1988, Homology of lysosomal enzymes and related proteins: Prediction of posttranslational modification of sites including phosphorylation of mannose and potential epitopic and substrate binding sites in the α-and β-subunits of hexosaminidases, α-glucosidase and rabbit and human isomaltase, Proteins 4:182–189.

    CAS  Google Scholar 

  • Basner, R., Von Figura, K., Glossl, J., Klein, U., Kresse, H., and Mlekusch, W., 1979, Multiple deficiency of mucopolysaccharide sulfatases in mucosulfatidosis, Pediatr. Res. 13:1316–1318.

    CAS  Google Scholar 

  • Baussant, T., Strecker, G., Wieruszeski, J-M., Montreuil, J., Michalski, J-M., 1986, Catabolism of glycoprotein glycans: Characterization of a lysosomal endo-N-acetyl-β-D-glucosaminidase specific for glycans with a terminal chitobiose residue, Eur. J. Biochem. 159:381–385.

    CAS  Google Scholar 

  • Berent, S. L., and Radin, N. S., 1981, Mechanism of activation of glucocerebrosidase by Co-B (glucosidase activator protein), Biochim. Biophys. Acta 664:572–582.

    CAS  Google Scholar 

  • Berg-Fussman, A., Grace, M. E., Ioannou, Y., and Grabowski, G. A., 1993, Human acid β-glucosidase: N-glycosylation site occupancy and the effect of glycosylation on enzymatic activity, J. Biol Chem. 268:14861–14868.

    CAS  Google Scholar 

  • Braidman, I., Carroll, M., Dance, N., Robinson, D., Poenaru, L., Weber, A., Dreyfus, J. C., Overdijk, B., Hooghwinkel, G. J. M., 1974, Characterisation of human N-acetyl-β-hexosaminidase C, FEBS Lett. 41:181–184.

    CAS  Google Scholar 

  • Brassart, D., Baussant, T., Weiruszeski, J-M., Strecker, G., Montreuil, J., and Michalski, J-C., 1987, Catabolism of N-glycosylprotein glycans: Evidence for a degradation pathway of sialylglyco-asparagines resulting from the combined action of the lysosomal aspartylglucosaminidase and endo-N-acetyl-β-D-glucosaminidase. A 400-MHz 1H-NMR study, Eur. J. Biochem. 169:131–136.

    CAS  Google Scholar 

  • Burkhart, T., and Wiesmann, U., 1987, Sulphated glycosaminoglycan (GAG) in the developing mouse brain. Quantitative aspects on the metabolism of total and individual sulphated GAGS in vivo, Dev. Biol. 120:447–456.

    Google Scholar 

  • Butler, W. T., 1978, Carbohydrate moieties of the collagens and collagen-like proteins in health and disease, in Glycoproteins and Glycolipids in Disease Process (E. F. Walboorg, ed.), pp. 213–226, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Cacan, R., Villers, C., Belard, M., Kaiden, A., Krag, S. S., and Verbert, A., 1992, Different fates of the oligosaccharide moieties of lipid intermediates, Glycobiology 2:127–136.

    CAS  Google Scholar 

  • Campbell, D. G., and Cohen, P., 1989, The amino acid sequence of rabbit skeletal muscle glycogenin, Eur. J. Biochem. 185:119–125.

    CAS  Google Scholar 

  • Cantz, M., and Ulrich-Bott, B., 1990, Disorders of glycoprotein degradation, J. Inher. Metab. Dis. 13: 523–537.

    CAS  Google Scholar 

  • Cao, Y., Mahrenholz, A. M., De Paloi-Roach, A. A., and Roach, P. J., 1993, Characterization of rabbit skeletal muscle glycogenin, J. Biol Chem. 268:14687–14693.

    CAS  Google Scholar 

  • Carraway, K. L., and Hull, S. R., 1991, Cell surface mucin-type glycoproteins and mucin-like domains, Glycobiology 1:131–138.

    CAS  Google Scholar 

  • Cenci di Bello, I., Dorling, P., and Winchester, B., 1983, The storage products in genetic and swainsonine-induced human mannosidosis, Biochem. J. 215: 693–696.

    CAS  Google Scholar 

  • Chen, Y. Q., Rafi, M. A., de Gala, G., and Wenger, D. A., 1993, Cloning and expression of cDNA encoding human galactocerebrosidase, the enzyme deficient in globoid cell leukodystrophy, Hum. Mol Genet. 2:1841–1845.

    CAS  Google Scholar 

  • Conzelman, E., and Sandhoff, K., 1978, Deficiency of a factor necessary for stimulation of hex-osaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid A2, Proc. Natl Acad. Sci. USA 75:3979–3983.

    Google Scholar 

  • Cuervo, A. M., Terlecky, S. R., Dice, J. K., and Knecht, E., 1994, Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes, J. Biol Chem. 269:26374–26380.

    CAS  Google Scholar 

  • Cuozzo, J. W., Tao, K., Wu, Q. L., Young, W., and Sahagian, G. G., 1995, Lysine-based structure in the proregion of cathepsin L is the recognition site for mannose phosphorylation, J. Biol Chem. 270:15611–15619.

    CAS  Google Scholar 

  • Daniel, P. F., Warren, C. D., James, L. F., and Jolly, R. D., 1989, A comparison of swainsonine-induced and genetic α-mannosidosis in Aberdeen Angus cattle, in Swainsonine and Related Glycosidase Inhibitors (L. F. James, A. D. Elbein, R. J. Molyneux, and C. D. Warren, eds.), pp. 331–343, University of Iowa Press, Ames, Iowa.

    Google Scholar 

  • Daniel, P. F., Evans, J. E., De Gasperi, R., Winchester, B., and Warren, C. D., 1992, A human lysosomal a(l → 6) mannosidase active on the branched trimannosyl core of complex glycans, Glycobiology 2:327–336.

    CAS  Google Scholar 

  • Daniel, P. F., Winchester, B., and Warren C. D., 1994, Mammalian α-mannosidases—multiple forms but a common purpose? Glycobiology 4:551–566.

    CAS  Google Scholar 

  • Danon, M. J., Oh, S. J., DiMauro, S., Manaligod, J. R. R., Eastwood, A., Naidu, S., and Schlisefeld, L. H., 1981, Lysosomal glycogen storage disease with normal acid maltase, Neurology 31:51–57.

    CAS  Google Scholar 

  • De Gasperi, R., Li, Y-T., Li, S-C., 1989, Presence of two endo-β-N-acetylglucosaminidases in human kidney, J. Biol Chem. 264:9329–9334.

    Google Scholar 

  • De Gasperi, R., Al Daher, S., Daniel, P. F., Winchester, B. G., Jeanloz, R. W., and Warren, C. D., 1991, The substrate specificity of bovine and feline lysosomal α-D-mannosidases in relation to α-mannosidosis, J. Biol. Chem. 266:16556–16563.

    Google Scholar 

  • De Gasperi, R., Daniel, P. F., and Warren, C. D., 1992a, A human lysosomal α-mannosidase specific for the core of complex glycans, J. Biol Chem. 267:9706–9712.

    Google Scholar 

  • De Gasperi, R., Al Daher, S., Winchester, B. G., and Warren, C. D., 1992b, Substrate specificity of the bovine and feline neutral α-mannosidases, Biochem. J. 286:55–63.

    Google Scholar 

  • Dice, J. F., 1990, Peptide sequences that target cytosolic proteins for lysosomal proteolysis, Trends Biochem. Sci. 15:305–309.

    CAS  Google Scholar 

  • Dong, L-Y. D., and Hart, G. W., 1994, Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol, J. Biol Chem. 269:19321–19330.

    CAS  Google Scholar 

  • Dunn, W. A., 1994, Autophagy and related mechanisms of lysosome-mediated protein degradation, Trends Cell Biol 4:139–143.

    CAS  Google Scholar 

  • Durand, P., and O’Brien, J. S., 1982, Genetic Errors of Glycoprotein Metabolism, Springer-Verlag, Berlin.

    Google Scholar 

  • Dustin, M. L., Baranski, T. J., Sampath, D., and Kornfeld, S., 1995, A novel mutagenesis strategy identified distantly spaced amino acid sequences that are required for the phosphorylation of both the oligosaccharides of procathepsin D by N-acetylglucosamine 1-phosphotransferase, J. Biol. Chem. 270:170–179.

    CAS  Google Scholar 

  • Endo, M., Yamamoto, M., Munakata, H., Yamamoto, R., Namiki, O., and Yosizawa, A., 1980, Tohoku J. Exp. Med. 133:355–361.

    Google Scholar 

  • Evered, D., and Whelan, J., 1989, The Biology of Hyaluronan, John Wiley, Chichester.

    Google Scholar 

  • Fedarko, N. S., and Conrad, H. E., 1986, A unique heparan-sulfate in the nuclei of hepatocytes— structural changes with the growth-state of the cells J. Cell Biol 102:587–599.

    CAS  Google Scholar 

  • Fisher, K. J., and Aronson, N. N., 1989, Isolation and sequence analysis of a cDNA encoding rat liver α-L-fucosidase, Biochem. J. 265:695–701.

    Google Scholar 

  • Fisher K. J., and Aronson, N. N., 1992, Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N-acetylchitobiase, J. Biol. Chem. 267:19607–19616.

    CAS  Google Scholar 

  • Fiszer-Szafarz, B., Czartoryska, B., Tylki-Szymanska, A., 1991, Evidence for the existence of a human serum hyaluronidase deficiency, Proceedings 8th Workshop of the European Study Group on Lysosomal Diseases, Annecy, France.

    Google Scholar 

  • Fransen, J. A. M., Ginsel, L. A., Cambier, P. H., Klumperman, J., Oude Elferink, R. P. J., and Tager, J. M., 1988, Immunocytochemical demonstration of the lysosomal enzyme α-glucosidase in the brush border of human intestinal epithelial cells, Eur. J. Cell Biol. 47:72–80.

    CAS  Google Scholar 

  • Fransson, L-A., Silverberg, I., and Carlsledt, I., 1985, Structure of the heparan sulphate-protein linkage region, J. Biol. Chem. 260:14722–14726.

    CAS  Google Scholar 

  • Fu, Q., Carson, G. S., Hiraina, M., Grate, M., Kishimoto, Y., and O’Brien, J. S., 1994, Occurrence of prosaposin as a neuronal surface membrane component, J. Mol Neurosci. 5:59–67.

    CAS  Google Scholar 

  • Fuchs, W., Beck, M., and Kresse, H., 1985, Intralysosomal formation and metabolic fate of N-acetyl-glucosamine-6-sulfate from keratan sulfate, Eur. J. Biochem. 151:551.

    CAS  Google Scholar 

  • Furst, W., and Sandhoff, K., 1992, Activator proteins and topology of lysosomal sphingolipid catabo-lism, Biochim. Biophys. Acta 1126:1–16

    CAS  Google Scholar 

  • Gasnier, F., Rousson, R., Lerme, F., Vagnanay, E., Louisot, F., and Gateau-Rosch, O., 1992, Mito-chondrial dolichyl-phosphate mannose synthase, Eur. J. Biochem. 206:853–858.

    CAS  Google Scholar 

  • Geddes, R., and Chow, J. C., 1994, Differing patterns of carbohydrate metabolism in liver and muscle, Carbohydr. Res. 256: 139–147.

    CAS  Google Scholar 

  • Geddes, R., and Taylor A., 1985, Lysosomal glycogen storage induced by acarbose, a 1,4-α-glucosi-dase inhibitor, Biochem. J. 228:319–324.

    CAS  Google Scholar 

  • Gillard, B. K., Thurmon, L. T., and Marcus, D. M., 1993, Variable subcellular localization of glyco-sphingolipids, Glycobiology 3:57–67.

    CAS  Google Scholar 

  • Glaumann, H., and Ballard, F. J., 1987, Lysosomes: Their Role in Protein Breakdown, Academic Press, London.

    Google Scholar 

  • Glew, R. H., Peters, P. S., and Christopher, A. R., 1976, Isolation and characterization of β-glucosidase from the cytosol of rat kidney cortex, Biochim. Biophys. Acta 422:179–199.

    CAS  Google Scholar 

  • Glew, R. H., Basu, A., LaMarco, K. L., and Prence, E. M., 1988, Mammalian glucocerebrosidase: Implications for Gaucher’s disease, Lab. Invest. 58:5–25.

    CAS  Google Scholar 

  • Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., 1988, The mannose 6-phosphate receptor and the biogenesis of lysosomes, Cell 52:329–341.

    CAS  Google Scholar 

  • Haeuw, J-F., Michalski, J-C., Strecker, G., Spik, G., and Montreuil, J., 1991a, Cytosolic glycosidases: Do they exist?, Glycobiology 1:487–492.

    CAS  Google Scholar 

  • Haeuw, J. F., Strecker, G., Wieruszeski, J. M., Montreuil, J., and Michalski, J. C., 1991b, Substrate specificity of rat liver cytosolic α-D-mannosidase-novel degradation pathway for oligomannosidic type glycans, Eur. J. Biochem. 202:1257–1268.

    CAS  Google Scholar 

  • Haeuw, J-F., Grard, T., Alonso, C., Strecker, G., and Michalski, J.-C., 1994, The core-specific lysosomal a(l-6)-mannosidase activity depends on aspartamidohydrolase activity, Biochem. J. 297 463–466.

    CAS  Google Scholar 

  • Hakomori, S., 1981, Glycosphingolipids in cellular interaction, differentiation and oncogenesis, Annu. Rev. Biochem. 50:733–764.

    CAS  Google Scholar 

  • Hakomori, S., 1990, Biofunctional role of glycosphingolipids, modulators for transmembrane signaling and mediators for cellular interactions, J. Biol. Chem. 265:18713–18716.

    CAS  Google Scholar 

  • Hakomori, S., 1993, Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions, Biochem. Soc. Trans. 21:583–595.

    CAS  Google Scholar 

  • Haltiwanger, R. S., Kelly, W. G., Roquemore, E. P., Blomberg, M. A., Dong, L. Y.-D., Kreppel, L., Chou, T.-Y, and Hart, G. W., 1992, Glycosylation of nuclear cytoplasmic proteins is ubiquitous and abundant, Biochem. Soc. Trans. 20:264–269.

    CAS  Google Scholar 

  • Hancock, L. W., and Dawson, G., 1989, Lysosomal degradation of glycoproteins and glycosamino-glycans, in Neurobiology of Glycoconjugates (R. V. Margolis and R. K. Margolis, eds.), pp 187–218, Plenum Press, New York.

    Google Scholar 

  • Harzer, K., Paton, B. C., Poulos, A., Kustermann-Kuhn, B., Roggendoff, W., Grisar, T., and Popp, M., 1989, Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: Biochemical signs of combined sphingolipidoses, Eur. J. Pediatr. 149:31–39.

    CAS  Google Scholar 

  • Hayes, B. K., and Hart, G. W., 1994, Novel forms of protein glycosylation, Curr. Opin. Struct. Biol. 4:692–696.

    CAS  Google Scholar 

  • Heinegard, D., and Oldberg, A., 1993, Glycosylated matrix proteins, in Connective Tissue and its Heritable Disorders (P. M. Royce and B. Steinmann, eds.), pp. 189–209, Wiley-Liss, New York.

    Google Scholar 

  • Hers, H. G., 1963, Alpha-glucosidase deficiency in generalized glycogen-storage disease (Pompe’s Disease), Biochem. J. 86:11–16.

    CAS  Google Scholar 

  • Hineno, T., Sano, A., Kodoh, K., Ueno, S.-I., Kakomoto, Y, Yoshida, K.-I., 1991, Secretion of sphingolipid hydrolase activator precursor, prosaposin, Biochem. Biophys. Res. Commun. 176:668–674.

    CAS  Google Scholar 

  • Hirabayashi, Y, Marumoto, Y, Matsumoto, M., Toida, T., Iida, N., Matsubara, T., Kanzaki, T., Yokota, M., and Ishizuka, I., 1990, Isolation and characterization of major urinary amino acid O-glycosides and a dipeptide O-glycoside from a new lysosomal storage disorder (Kanzaki disease), J. Biol. Chem. 265:1693–1701.

    CAS  Google Scholar 

  • Hiraiwa, M., O’Brien, J. S., Kishimoto, Y, Goldzicka, M., Fluharty, A. L., Ginns, E. I., and Martin, B. M., 1993, Isolation, characterization and proteolysis of human prosaposin, the precursor of saposins (sphingolipid activator proteins), Arch. Biochem. Biophys. 304:110–116.

    CAS  Google Scholar 

  • Hirschhorn, R., 1995, Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency, in The Metabolic and Molecular Bases of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2443–2464, McGraw-Hill, New York.

    Google Scholar 

  • Hiscock, D. R. R., Yanagishita, M., and Hasall, V. G., 1994, Nuclear localization of glycosaminogly-cans in rat ovarian granulosa cells, J. Biol. Chem. 269:4539–4564.

    CAS  Google Scholar 

  • Hoefsloot, L. H., Hoogeven-Westerveld, M., Kroos, M. A., Van Beeumer, J., Reuser, A. J. J., and Oostra, B., 1988, Primary structure and processing of lysosomal α-glucosidase: Homology with the intestinal sucrase:isomaltase complex, EMBO J. 7:1697–1704.

    CAS  Google Scholar 

  • Hoefsloot, L. H., Hoogeven-Westeveld, M., Reuser, A. J. J., and Oostra, B. A., 1990, Characterization of the human lysosomal α-glucosidase gene, Biochem. J. 272: 493–497.

    CAS  Google Scholar 

  • Hoogeven, A. J., Verheijen, F. W., and Galjard, H., 1983, The relation between human lysosomal β-galactosidase and its protective protein, J. Biol. Chem. 258:12143–12146.

    Google Scholar 

  • Hook, M., Woods, A., Johansson, S., Kjellen, L., and Couchman, J. R., 1986, Functions of proteo-glycans at the cell surface, Ciba Found. Symp. 124:143–157.

    CAS  Google Scholar 

  • Hopkins, C. R., Gibson, A., Shipman, M., and Miller, K., 1990, Movement of internalized ligand receptor complexes along a continuous endosomal reticulum, Nature 346:335–339.

    CAS  Google Scholar 

  • Hopwood, J. J., 1989, Enzymes that degrade heparin and heparan sulphate, in Heparin: Chemical and Biological Properties, Clinical Applications (D. W. Lane and U. Lindahl, eds.), pp. 191–229, Edward Arnold, London.

    Google Scholar 

  • Hopwood, J., and Elliott, H., 1985, Urinary excretion of sulphated N-acetylhexosamines in patients with various mucopolysaccharidoses, Biochem. J. 229:579–586.

    CAS  Google Scholar 

  • Hopwood, J. J., and Morris, C. P., 1990, The mucopolysaccharidoses: Diagnosis, molecular genetics and treatment, Mol. Biol. Med. 7:381–404.

    CAS  Google Scholar 

  • Iozzo, R. V., Cohen, I. R., Grasell, S., and Murdoch, A. D., 1994, The biology of perlecan: The multi-faceted heparan sulphate proteoglycan of basement membranes and pericellular matrices, Biochem. J. 302:625–639.

    CAS  Google Scholar 

  • Jackson, R. L., Busch, S. J., and Cardin, A.D., 1991, Glycosaminoglycans: Molecular properties, protein interactions and role in physiological processes, Physiol. Rev. 71:481–539.

    CAS  Google Scholar 

  • Kaartinen, V., Mononen, T., Laatikainen, R., and Mononen, I., 1992, Substrate specificity and reaction mechanism of human glycoasparaginase, J. Biol. Chem. 267:6855–6858.

    CAS  Google Scholar 

  • Kang, M. S., Bowlin, T. L., Vijay, I. K., and Sunkara, S. P., 1993, Accumulation of pentamannose oligosaccharides in human mononuelear leukocytes by action of swainsonine, an inhibitor of glycoprotein processing, Carbohydr. Res. 248:327–337.

    CAS  Google Scholar 

  • Kanzaki, T., Yokota, M., Mizuno, N., Matsumoto, Y., and Hirabayashi, Y, 1989, Novel lysosomal glycoaminoacid storage disease with angiokeratoma corporis diffusum, Lancet 875–876.

    Google Scholar 

  • Kielty, C. M., Hopkinson, I., and Grant, M. E., 1993, The collagen family: Structure, assembly and organization in the extracellular matrix, in Connective Tissue and Its Heritable Disorders (P. M. Royce and B. Steinmann, eds.), pp. 103–147, Wiley-Liss, New York.

    Google Scholar 

  • Kirkman, B. R., Whelan, W. J., and Bailey, J. M. 1989, The distribution of glucosamine in mammalian glycogen from different species, organs and tissues, Biofactors 2:123.

    CAS  Google Scholar 

  • Kishimoto, Y, Hiraiwa, M. and O’Brien, J. S., 1992, Saposins: Structure, function, distribution, and molecular genetics, J. Lipid Res. 33:1255–1267.

    CAS  Google Scholar 

  • Kjellen, L., and Lindahl, U., 1991, Proteoglycans: Structures and interactions, Annu. Rev. Biochem. 60:443–475.

    CAS  Google Scholar 

  • Klein, U., and von Figura, K., 1979, Substrate specificity of a heparan-degrading endoglucuronidase from human placenta, Hoppe-Seyler’s Z. Physiol. Chem. 360:1465.

    CAS  Google Scholar 

  • Klima, B., Pohlenz, G., Schindler, D., and Egge, H., 1992, An investigation into the glycolipid metabolism of α-N-acetylgalactosaminidase-deficient fibroblasts using native and artificial glycolipids, Biol Chem. Hoppe-Seyler 373:989–999.

    CAS  Google Scholar 

  • Kobata, A., 1992, Structures and functions of the sugar chains of glycoproteins, Eur. J. Biochem. 209: 483–500.

    CAS  Google Scholar 

  • Kobayashi, T., Shinnon, N., Goto, I., and Kuroiwa, Y, 1985, Hydrolysis of galactosylceramide is catalyzed by two genetically distinct acid β-galactosidases, J. Biol Chem. 260:14982–14987.

    CAS  Google Scholar 

  • Kok, J. W., and Hoekstra, D., 1994, Glycosphingolipid trafficking in the endocytic pathway Curr. Top. Membr. 40:503–557.

    CAS  Google Scholar 

  • Kondoh, K., Sano, A., Kakimoto, Y, Matsuda, S., and Sakanata, M., 1993, Distribution of prosaposin-like immunoreactivity in rat brain, J. Comp. Neurol. 334:590–602.

    CAS  Google Scholar 

  • Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54:631–664.

    CAS  Google Scholar 

  • Kreysing, J., von Figura, K., and Gieselmann, V., 1990, Structure of the arylsulfatase A gene, Eur. J. Biochem. 191:627–631.

    CAS  Google Scholar 

  • Kroos, M. A., Van der Kraan, M., Van den Boogaard, M. J., Ausens, M. G. E. M., Ploos van Amstel, H. K., Poenaru, L., Nicolino, M., Wevers, R., Van Diggelen, O., Kleijer, W., and Reuser, A. J. J., 1995, Glycogen storage disease type II: The frequency of 3 common mutant alleles and their associated clinical phenotypes studied in 121 patients, J. Med. Genet. 32:836–837.

    CAS  Google Scholar 

  • Kuranda, M. J., and Aronson, N. N., 1987, A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in rat liver, J. Biol. Chem. 261: 5803–5809.

    Google Scholar 

  • Kusche, M., Backstrom, G., Riesfeld, J., Petitou, M., Chosy, J., and Lindahl, U., 1988, Biosynthesis of heparin: O-sulfation of the anti-thrombin binding region, J. Biol. Chem. 263:15474–15484.

    CAS  Google Scholar 

  • Kuwana, T., Mullock, B. M., and Luzio, J. P., 1995, Identification of a lysosomal protein causing lipid transfer, using a fluorescence assay designed to monitor membrane fusion between rat liver endo-somes and lysosomes, Biochem. J. 308:937–946.

    CAS  Google Scholar 

  • Lecat, D., Lemmonier, M., Derappe, C., Lhermitte, M., Halbeek, H., Dorland, I., and Vliegenthart, J. F. G., 1984, The structure of sialoglycopeptides of the O-glycosidic types isolated from siali-dosis (muco-lipidosis I) urine, Eur. J. Biochem. 140:415–420.

    CAS  Google Scholar 

  • Leroy, J. G., and Wiesmann, U., 1993, Disorders of lysosomal enzymes, in Connective Tissue and its Heritable Disorders (P. M. Royce and B. Steinmann, eds.), pp. 613–639, Wiley-Liss, New York.

    Google Scholar 

  • Levral, C., Adrial, D., and Louisot, P., 1990, Comparative study of the N-glycosylation synthesis through dolichol intermediates in mitochondria, Golgi apparatus-rich and endoplasmic-rich fraction, Int. J. Biochem. 22:287–293.

    Google Scholar 

  • Li, Y.-T., Mazzotta, Y, War, C. C., Orth, R., and Li, S.-C., 1973, Hydrolysis of Tay-Sachs ganglioside by β-hexosaminidase A of human liver and urine, J. Biol. Chem. 248:7511–7515.

    Google Scholar 

  • Lindahl, U., 1989, Biosynthesis of heparin and related structures, in Heparin, Chemical and Biological Properties, Clinical Applications (D. A. Lane and U. Lindahl, eds.), pp. 159–189, Edward Arnold, London.

    Google Scholar 

  • Linden, H.-U., Klein, R. A., Egge, H., Peter-Katalinic, J., Dabrowski, J., and Schindler, D., 1989, Isolation and structural characterization of sialic acid-containing glycopeptides of the O-glycosidic type from the urine of two patients with a hereditary deficiency in α-N-acetylgalactosaminidase activity, Biol. Chem. Hoppe-Seyler 370:661–672.

    CAS  Google Scholar 

  • Lomako, J., Lomako, W. M., and Whelan, W. J., 1992, The substrate specificity of isoamylase and the preparation of apo-glycogenin, Carbohydr. Res. 227:331–338.

    CAS  Google Scholar 

  • Lomako, J., Lomako, W. M., Whelan, W. J., and Marchase, R. B., 1993, Glycogen contains phospho-diester groups that can be introduced by UDPGlucose-glycogen glucose 1-phosphotransferase FEBS Lett. 329:263–267.

    CAS  Google Scholar 

  • Marchase, R. B., Bounelis, P., Brumley, L. M., Dey, N., Browne, B., Auger, D., Fritz, T. A., Kulesza, P., and Bedwell, D. M., 1993, Phosphoglucomutase in saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase, J. Biol. Chem. 268:8341–8349.

    CAS  Google Scholar 

  • Martiniuk, F., Bodkin, M., Taall, S., and Hirschhorn, R., 1990, Identification of base-pair substitution responsible for a human acid alpha-glucosidase allele with lower affinity for glycogen (GAA 11) and transient gene expression in deficient cells, Am. J. Hum. Genet. 47:440–445.

    CAS  Google Scholar 

  • Martiniuk, F., Bodkin, M., Tzall, S., and Hirschhorn, R., 1991, Isolation and partial characterization of the structural gene for human acid alpha glucosidase (GAA), DNA Cell Biol. 10:283–292.

    CAS  Google Scholar 

  • Matsue, H., and Endo, M., 1987, Heterogeneity of reducing terminals of urinary chondroitin sulfates, Biochim. Biophys. Acta. 923:A10–411.

    Google Scholar 

  • Mayer, R., and Doherty, F., 1986, Intracellular protein catabolism: State of art, FEBS Lett. 198:181–193.

    CAS  Google Scholar 

  • McCarter, J. D., and Withers, S. G., 1994, Mechanisms of enzymatic glycoside hydrolysis, Curr. Opin. Struct. Biol. 4:885–892.

    CAS  Google Scholar 

  • Mehl, E., and Jatzkewitz, H., 1964, Eine cerebrosid-sulfatase aus schweiniere, Hoppe-Seyler’s Z. Physiol. Chem. 339:260–276.

    CAS  Google Scholar 

  • Michalski, J.-C., Haeuw, J.-F., Wieruszeski, J.-M., Montreuil, J., and Strecker, G., 1990, In vitro hydrolysis of oligomannosyl oligosaccharides by the lysosomal α-D-mannosidases, Eur. J. Biochem. 189:369–379.

    CAS  Google Scholar 

  • Miyatake, T., and Suzuki, K., 1972, Globid cell leukodystrophy: Additional deficiency of psychosine galactosidase, Biochem. Biophys. Res. Commun. 48:538.

    CAS  Google Scholar 

  • Moore, S. E. H., and Spiro, R. G., 1994, Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis, J. Biol. Chem. 269: 12715–12721.

    CAS  Google Scholar 

  • Morimoto, S., Kishimoto, Y, Tomich, J., Weiler, S., Ohashi, T., Barranger, J. A., Kretz, K. A., and O’Brien, J., 1990a, Interaction of saposins, acidic lipids and glycosyl-ceramidase, J. Biol. Chem. 265:1933–1937.

    CAS  Google Scholar 

  • Morimoto, S., Yamamoto, Y, O’Brien, J. S., and Kishimoto, Y, 1990b, Distribution of saposin proteins (sphingolipid activator proteins) in lysosomal storage and other diseases, Proc. Natl. Acad. Sci. USA 87:3493–3497.

    CAS  Google Scholar 

  • Murali, R., Ioannou, Y A., Desnick, R. J., and Bunett, R. M., 1994, Crystallization and preliminary X-ray analysis of human α-galactosidase A complex, J. Mol. Biol. 239:578–580.

    CAS  Google Scholar 

  • Murphy, G., and Reynolds, J. J., 1993, Extracellular matrix degradation, in Connective Tissue and Its Heritable Disorders (P. M. Royce and B. Steinmann, eds.), pp. 287–316, Wiley-Liss, New York.

    Google Scholar 

  • Neufeld, E. F., 1989, Natural history and inherited disorders of a lysosomal enzyme, β-hexosaminidase, J. Biol. Chem. 264:10927–10930.

    CAS  Google Scholar 

  • Neufeld, E. F., 1991, Lysosomal storage diseases, Annu. Rev. Biochem. 60:257–280.

    CAS  Google Scholar 

  • Neufeld, E. F., and Ash well, G., 1980, Carbohydrate recognition systems for receptor-mediated pinocytosis, in The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), pp. 241–266, Plenum Press, New York.

    Google Scholar 

  • Neufeld, E. F., and Muenzer, J., 1995, The mucopolysaccharidoses, in The Metabolic and Molecular Bases of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2465–2494, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Ng, C. K., Handley, C. J., Preston, B. N., and Robinson, H. C., 1992, The extracellular processing and catabolism of hyaluronan in cultured adult articular cartilage expiants, Arch. Biochem. Biophys. 298:70–79.

    CAS  Google Scholar 

  • Nguyen, Q., Murphy, G., Roughley, P. J., and Mort, J. S., 1989, Degradation of proteoglycan aggregates by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ, Biochem, J. 259:61–67.

    CAS  Google Scholar 

  • O’Brien, J. S., Kretz, K. A., Dewji, N. N., Wenger, D. A., Esch, F., and Fluharty, A. L., 1988, Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus, Science 241: 1098–1101.

    Google Scholar 

  • Oegama, T. R., Kraft, E. L., Jourdian, G. W., and Van Valen, T. R., 1984, Phosphorylation of chondroitin sulphate in proteoglycans from the swarm rat chondrosarcoma, J. Biol Chem. 259:1720–1726.

    Google Scholar 

  • Oosta, G. M., Faureau, L. V., Beeler, D. L., and Rosenberg, R. D., 1982, Purification and properties of human platelet heparatinase, J. Biol Chem. 257:11249–11255.

    CAS  Google Scholar 

  • Paschke, E., and Kresse, H., 1982, Morquio disease type B: Activation of GM1-β-galactosidase by GM1 activator, Biochem. Biophys. Res. Commun. 109:568–578.

    CAS  Google Scholar 

  • Paulsson, M., 1987, Noncollagenous proteins of basement membranes, Collagen Relat. Res. 7:443–461.

    CAS  Google Scholar 

  • Peters C., Schmidt, B., Rommerskirch, W., Rupp, K., Zuhlsdorft, M., Vingron, M., Meyer, H. E., Pohlmann, R., and von Figura, K., 1990, Phylogenetic conservation of arylsulfatases cDNA cloning and expression of human arylsulfatase B, J. Biol. Chem. 265:3374–3381.

    CAS  Google Scholar 

  • Phillips, N. C., Robinson, D., and Winchester, B. G., 1974, Human liver α-mannosidase, Clin. Chim. Acta 65:11–19.

    Google Scholar 

  • Pierce, R. J., Spik, G., and Montreuil, J., 1979, Cytosolic location of endo-N-acetyl-β-D-glucosaminidase activity in rat liver and kidney, Biochem. J. 180:673–676.

    CAS  Google Scholar 

  • Pompe, J.-C., 1932, Over idiopatische hypertrophie van het hart, Ned. Tijdschr. Geneeskd. 76:304–311.

    Google Scholar 

  • Poole, A. R., 1986, Proteoglycans in health and disease: Structures and functions, Biochem. J. 236:1–14.

    CAS  Google Scholar 

  • Prehm, P., 1983, Synthesis of hyaluronate in differentiated teratocarcinoma cells. Characterization of the synthase, Biochem. J. 211:181–198.

    CAS  Google Scholar 

  • Rademacher, T. W., Parekh, R. B., and Dwek, R. A., 1988, Glycobiology, Annu. Rev. Biochem. 57: 785–838.

    CAS  Google Scholar 

  • Radin, N. S., Shukla, A., Shukla, G. S., and Sano, A., 1989, Heat-stable protein that stimulates acid alpha-glucosidase, Biochem. J. 264:845–849.

    CAS  Google Scholar 

  • Reuser, A. J. J., Kroos, M. A., Hermans, M. P. P., Bijcoet, A. G. A., Verbet, M. A., Van Diggelen, O., Kleijer, W. J., and Van der Brughe, A., 1993, Glycogenosis type II (acid maltase deficiency), Muscle Nerve 18:561–569.

    Google Scholar 

  • Robertson, D. A., Freeman, C., Morris, C. P., and Hopwood, J. J., 1992, A cDNA clone for human glucosamine-6-sulfatase reveals differences between arylsulfatase and non-arylsulfatase, Biochem. J. 288:539–544.

    CAS  Google Scholar 

  • Rock, P., Allietta, M., Young, W. W., Thompson, T. E., and Tillack, T. W., 1990, Organization of glycosphingolipids in phosphatidyl choline bilayers: Use of antibody molecules and Fab fragments as morpholigic markers, Biochemistry 29:8488–8490.

    Google Scholar 

  • Roden, L., 1980, Structure and metabolism of connective tissue proteoglycans, in The Biochemistry of Glycoproteins and Proteoglycans (W. Lennarz, ed.), pp. 267–371, Plenum Press, New York.

    Google Scholar 

  • Rodriguez, I. R., and Whelan, W. J., 1985, A novel glycosyl-amino acid linkage: Rabbit muscle glycogen is covalently linked to a protein via tyrosine, Biochem. Biophys. Res. Commun. 132: 829–836.

    CAS  Google Scholar 

  • Rome, L. H., and Hill, D. F., 1986, Lysosomal degradation of glycoproteins and glycosaminoglycans: Efflux and recycling of sulphate and N-acetylhexosamines, Biochem. J. 235:707–713.

    CAS  Google Scholar 

  • Sakai, N., Inui, K., Fujii, N., Fukushima, H., Nishimoto, J., Yanagihara, I., Isegawa, Y., Iwamatsu, A., and Okada, S., 1994, Krabbe disease: Isolation and characterization of a full-length cDNA for human galactocerebrosidase, Biochem. Biophys. Res. Commun. 198:485–491.

    CAS  Google Scholar 

  • Sampson, P. M., Rochester, C. L., Freundlich, B., and Elias, J. A., 1992, Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production: Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase, J. Clin. Invest. 90:1492–1503.

    CAS  Google Scholar 

  • Sandhoff, K., and Klein, A., 1994, Intracellular trafficking of glycosphingolipids: Role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion, FEBS Lett. 346:103–107.

    CAS  Google Scholar 

  • Sandhoff, K., van Echten, G., Schroder, M., Schnabel, D., and Suzuki, K., 1992, Activators and inhibitors of glycosidases and glycosyltransferases, Biochem. Soc. Trans. 20:695–699.

    CAS  Google Scholar 

  • Sasaki, H., Yamada, K., Akasaka, K., Kawasaki, H., Suzuki, K., Saito, A., Sato, M., and Shimada, H., 1988, cDNA cloning, nucleotide sequence and expression of the gene for arylsulfatase in the sea urchin (Hemicentrotus pulcherrimus) embryo, Eur. J. Biochem. 177:9–13.

    CAS  Google Scholar 

  • Schachter, H., 1991, Enzymes associated with glycosylation, Curr. Opin. Struct. Biol. 1:755–765.

    CAS  Google Scholar 

  • Schachter, H., and Brockhausen, I., 1992, The biosynthesis of serine (threonine)-N-acetylgalac-tosamine-linked carbohydrate moieties, in Glycoconjugates, Composition, Structure and Function (H. J. Allen and E. C. Kisalius, eds.), pp. 263–332, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Schmidt, B., Selmer, T., Ingendoh, A., and von Figura, K. 1995, A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency, Cell 82:271–278.

    CAS  Google Scholar 

  • Schmidt, G., Hausser, H., and Kresse, H., 1990, Extracellular accumulation of small dermatan sulphate proteoglycan II by interference with the secretion-recapture pathway, Biochem. J. 266:591–595.

    CAS  Google Scholar 

  • Schnaar, R. L., 1991, Glycolipids cell surface recognition, Glycobiology 1:477–485.

    CAS  Google Scholar 

  • Schnabel, D., Schroder, M., and Sandhoff, K., 1991, Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease, FEBS Lett. 284:57–59.

    CAS  Google Scholar 

  • Schnabel, D., Schroder, M., Furst, W., Klein, A., Hurwitz, R., Zeur, T., Weber, J., Harzer, K., Paton, B. C., Poulos, A., Suzuki, K., and Sandhoff, K., 1992, Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation code of their common gene, J. Biol. Chem. 267:3312–3315.

    CAS  Google Scholar 

  • Schreiner, R., Schnabel, E., and Wieland, F., 1994, Novel N-glycosylation in eukaryotes: Laminin contains the linkage unit β-glucosylasparagine, J. Cell Biol. 124:1071–1081.

    CAS  Google Scholar 

  • Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., 1995, The Metabolic and Molecular Bases of Inherited Disease, 7th Ed., McGraw-Hill, New York.

    Google Scholar 

  • Shaklee, P. N., Glaser, J. H., and Conrad, H. E., 1985, A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans, J. Biol. Chem. 260:9146–9149.

    CAS  Google Scholar 

  • Shoup, V. A., and Touster, O., 1976, Purification and characterization of the α-D-mannosidase of rat liver cytosol, J. Biol Chem. 251:3845–3852.

    CAS  Google Scholar 

  • Skelly, B., Sargan, D., Heritage, M., and Winchester, B., 1996, The molecular defect underlying canine fucosidosis, J. Med. Genet. 33:284–288.

    CAS  Google Scholar 

  • Smedsrod, B., Pertoff, H., Ericsson, S., Fraser, J. R. E., and Laurent, T. C., 1984, Studies in vitro on the uptake and degradation of sodium hyaluronate in rat liver endothelial cells, Biochem. J. 223: 617–626.

    CAS  Google Scholar 

  • Smythe, C., and Cohen, P., 1991, The discovery of glycogenin and the priming mechanism for glycogen biogenesis, Eur. J. Biochem. 200:625–631.

    CAS  Google Scholar 

  • Solomon, E., and Barker, D. F., 1989, Report of the committee on the genetic constitution of chromosone 17, Cytogenet. Cell. Genet. 51:319–337.

    CAS  Google Scholar 

  • Song, Z., Li, S.-C., Li, Y.-Y, 1987, Absence of endo-β-N-acetylglucosaminidase activity in the kidneys of sheep, cattle and pig, Biochem. J. 254:145–149.

    Google Scholar 

  • Spillmann, D., and Lindahl, U., 1994, Glycosaminoglycan—protein interactions: A question of specificity, Curn Opin. Struct. Biol. 4:667–682.

    Google Scholar 

  • Stirling, J. L., 1974, Human N-acetyl-β-hexosaminidases: Hydrolysis of N,N-diacetylchitobiose by a low molecular weight enzyme, FEBS Lett. 39:171–175.

    CAS  Google Scholar 

  • Strecker, G., Fournet, B., Bouquelet, S., Montreuil, J., Dhondt, J. L., and Farriaux, J.-P., 1976, Etude chimique de mannosides urinaires excretes au cours de la mannosidose, Biochimie 58:579–586.

    CAS  Google Scholar 

  • Sundblad, G., Holojda, S., Roux, L., Varki, A., and Freeze, H. H., 1988, Sulfated N-linked oligosaccharides in mammalian cells, identification of glycosaminoglycan-like chains attached to complex-type glycans, J. Biol. Chem. 263:8890–8896.

    CAS  Google Scholar 

  • Suzuki, K., 1970, Formation and turnover of myelin gangliosides, J. Neurochem. 17:209–213.

    CAS  Google Scholar 

  • Sylvester, S. R., Morales, C., Oko, R., and Griswold, M. D., 1989, Sulfated glycoprotein-1 (saposin precursor) in the reproductive tract of the male rat, Biol. Reprod. 41:941–948.

    CAS  Google Scholar 

  • Symington, F. W., Murray, W. A., Bearman, S. L., and Hakomori, S., 1987, Intracellular localisation of lactosylceramide, the major human neutrophil glycosphingolipid, J. Biol. Chem. 262: 11356–11363.

    CAS  Google Scholar 

  • Takagaki, K., Nakamura, T., and Endo, M., 1988a, Demonstration of an endo-β-galactosidase and an endo-β-xylosidase that degrade the proteoglycan linkage region, Biochim. Biophys. Acta 966:94–98.

    CAS  Google Scholar 

  • Takagaki, K., Nakamura, T., Majima, M., and Endo, M., 1988b, Isolation and characterization of chondroitin sulphate-degrading endo-β-glucuronidase from rabbit liver, J. Biol. Chem. 163:7000–7006.

    Google Scholar 

  • Takahashi, Y., Nakamura, Y., Tamaguchi, S., and Orii, T., 1991, Urinary oligosaccharide excretion and severity of galactosialidosis and sialidosis, Clin. Chim. Acta 203:199–210.

    CAS  Google Scholar 

  • Takeuchi, Y, Sakaguchi, K., Yanagishita, M., and Hasall, V. C., 1990, Heparan sulphate proteoglycans on rat parathyroid cells recycled in low Ca2+ medium, Biochem. Soc. Trans. 18:816–818.

    CAS  Google Scholar 

  • Tayama, M., O’Brien, J. S., and Kishimoto, Y., 1992, Distribution of saposins (sphingolipid activator proteins) in tissues of lysosomal storage disease patients, J. Mol Neurosci. 3:171–175.

    CAS  Google Scholar 

  • Thomas, G. H., and Beaudet, A. L., 1995, Disorders of glycoprotein degradation and structure, in The Metabolic and Molecular Bases of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2529–2561, McGraw-Hill, New York.

    Google Scholar 

  • Tomatsu, S., Fukuda, S., Masue, M., Sukegawa, K., Fukao, T., Yamagisshi, A., Hori, T., Iwata, H., Ogawa, T., Nakashima, Y, Hanyu, Y, Hashimoto, T., Titani, K., Oyama, R., Suzuki, M., Yagi, K., Hayashi, Y, and Orii, T., 1991, Morquio disease: Isolation characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase, Biochem. Biophys. Res. Commun. 181:677–683.

    CAS  Google Scholar 

  • Truppe, W., Basner, R., von Figura, K., and Kresse, H., 1977, Uptake of hyaluronate by cultured cells, Biochem. Biophys. Res. Commun. 78:713–719.

    CAS  Google Scholar 

  • Tsay, G. C., Dawson, G., and Sung, S.-S. J., 1976, Structure of the accumulating oligosaccharide in fucosidosis, J. Biol. Chem. 251:5852–5859.

    CAS  Google Scholar 

  • Tsuji, A., Omura, K., and Suzuki, Y, 1988, Intracellular transport of acid α-glucosidase in human fibroblasts: Evidence for involvement of phosphomannosyl receptor-independent system, J. Biochem. (Tokyo) 104:276–278.

    CAS  Google Scholar 

  • Tulsiani, D. R. P., and Touster, O., 1992, Evidence that swainsonine pretreatment of rats leads to the formation of autophagic vacuoles and endosomes with decreased capacity to mature to, or fuse with, active lysosomes, Arch. Biochem. Biophys. 296:556–561.

    CAS  Google Scholar 

  • Turnbull, J. E., and Gallagher, J. J., 1993, Heparan sulphate: Functional role as a modulator of fibroblast growth factor activity, Biochem. Soc. Trans. 21:477–482.

    CAS  Google Scholar 

  • Vanderjagt, D. J., Fry, D. E., and Glew, R. H., 1994, Human glucocerebrosidase catalyses transgluco-sylation between glucocerebroside and retinol, Biochem. J. 300:309–315.

    CAS  Google Scholar 

  • Van Diggelen, O. P., Schindler, D., Kleijer, W. J., Huijmans, J. M. G., Galjaard, H., Linden, H. U., Peter-Kalanic, J., Egge, H., Dabrowski, U., and Cantz, M., 1987, Lysosomal α-N-acetylgalac-tosaminidase deficiency: A new inherited metabolic disease, Lancet 2:804.

    Google Scholar 

  • Villers, C., Cacan, R., Mir, A.-M., Labau, O., and Verbert, A., 1994, Release of oligosaccharide-type glycans as a marker of the degradation of newly synthesized glycoproteins, Biochem. J. 298: 135–142.

    CAS  Google Scholar 

  • Vogel, A., Schwarzmann, G., and Sandhoff, K., 1991, Glycosphingolipid specificity of the human sulfatide activator protein, Eur. J. Biochem. 200:591–597.

    CAS  Google Scholar 

  • Wang, A. M., Bishop, D. F., and Desnick, R. J., 1990, Human α-N-acetylgalactosaminidase-molecular cloning, nucleotide sequence, and expression of a full-length cDNA, J. Biol. Chem. 265:21859–21866.

    CAS  Google Scholar 

  • Warner, T. G., Louie, A., and Potier, M., 1990, Photolabeling of the α-neuraminidase/β-galactosidase complex from human placenta with a photoreactive neuraminidase inhibitor, Biochem. Biophys. Res. Commun. 173:13–19.

    CAS  Google Scholar 

  • Wenger, D. A., and Inui, K., 1984, Studies on the sphingolipid activator protein for the enzymatic hydrolysis of GM1 ganglioside and sulfatide, in Molecular Basis of Lysosomal Storage Diseases (R. O. Brady and J. Barranger, eds.), pp, 1–18, Academic Press, New York.

    Google Scholar 

  • Wessling-Resnick, M., and Braell, W. A., 1990, The sorting and segregation mechanism of the endocytic pathway is functional in a cell-free system, J. Biol Chem. 265:690–699.

    CAS  Google Scholar 

  • Wight, T. N., Kinselk, M. G., and Qwarnstrom, E. E., 1992, The role of proteoglycans in cell adhesion, migration and proliferation, Curr. Opin. Cell Biol. 4:793–801.

    CAS  Google Scholar 

  • Willemsen, R., van Dongen, J. M., Ginns, E. I., Schram, A. W., Tager, J. M., Barranger, J. A., and Reuser, A. A. J., 1987, Ultrastructural localization of glucocerebrosidase in cultured Gaucher’s disease fibroblasts by immunocytochemistry, J. Neurol 234:44–51.

    CAS  Google Scholar 

  • Wilson, P. J., Morris, C. P., Anson, D. S., Occhiodoro, T., Bielicki, J., Clements, P. R., and Hopwood, J. J., 1990, Hunter syndrome, isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA, Proc. Natl. Acad. Sci. USA 87:8531–8535.

    CAS  Google Scholar 

  • Wisselaar, H. A., Kross, M. A., Hermans, M. M. P., van Beeumen, J., and Reuser, A. J. J., 1993, Structural and functional changes of lysosomal acidic α-glucosidase during intracellular transport and maturation, J. Biol. Chem. 268:2223–2231.

    CAS  Google Scholar 

  • Yen, P. H., Allen, E., Marsh, B., Mohandas, T., Wang, N., Taggart, R. T., and Shapiro, L. J., 1987, Cloning and expression of steriod sulfatase cDNA and the frequent occurrence of deletions in STS deficiency, implications for X-Y interchange, Cell 49:443–454.

    CAS  Google Scholar 

  • Zhu, Y, and Conner, G. E., 1994, Intermolecular association of lysosomal protein precursors during biosynthesis, J. Biol. Chem. 269:3846–3851.

    CAS  Google Scholar 

  • Zhu, L., Hopes, T. J., Hall, J., Davies, A., Stern, M., Muller-Eberhard, U., Stern, R., and Parslow, T. G., 1994, Molecular cloning of a mammalian hyaluronidase reveals identity with hemopexin, a serum heme-binding protein, J. Biol. Chem. 269:32092–32097.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Winchester, B.G. (1996). Lysosomal Metabolism of Glycoconjugates. In: Lloyd, J.B., Mason, R.W. (eds) Biology of the Lysosome. Subcellular Biochemistry, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5833-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5833-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7674-3

  • Online ISBN: 978-1-4615-5833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics