Skip to main content

Theoretical Description of Biomolecular Hydration

Application to A-DNA

  • Chapter
Neutrons in Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 64))

Abstract

The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG)5]2 and [d(C5G5)]2. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers (P. Langan et al. J. Biomol. Struct. Dyn., 10, 489(1992)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott, S., & Hukins, D.W.L., (1972). Optimized parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Commun., 47:1504–1510.

    Article  PubMed  CAS  Google Scholar 

  • Austin, R.H., Robertson, M.W., & Mansky, P., (1989). Far-infrared perturbation of reaction rates in myoglobin at low temperatures. Phys. Rev. Lett., 62:1912–1915.

    Article  PubMed  CAS  Google Scholar 

  • Berman, H., (1991). Hydration of DNA. Curr. Opin. Struct. Biol., 1:423–427.

    Article  CAS  Google Scholar 

  • Brooks, C.L., Karplus, M., & Montgomery-Pettitt, B., (1988). Proteins: A theoretical perspective of dynamics, structure and thermodynamics. Adv. Chem. Phys., 71:259pp.

    Google Scholar 

  • Clementi, E., (1976). Lecture Notes in Chemistry, Vol. 2. Determination of Liquid Water Structure. Coordination Numbers for Ions and Solvation of Biological Molecules. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Doster, W., Cusack, S., & Petry, W., (1989). Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337:754–756.

    Article  PubMed  CAS  Google Scholar 

  • Forsyth, V.T., Langan, P., Mahendrasingam, A., Fuller, W., & Mason, S.A., (1992). High angle neutron fiber diffraction studies of DNA. Neutron News, 3(4):21–24.

    Article  Google Scholar 

  • Grimm, H., Stiller, H., Majkrzak, C.F., Rupprecht, A., & Dahlborg, U., (1987). Observation of acoustic umklapp phonons in water-stabilized DNA by neutron scattering. Phys. Rev. Lett., 59:1780–1783.

    Article  PubMed  CAS  Google Scholar 

  • Hummer, G., & Soumpasis, D.M., (1994a). Computation of the water density distribution at the ice-water interface using the potentials-of-mean-force expansion. Phys Rev. E., 49:591–596.

    Article  CAS  Google Scholar 

  • Hummer, G., & Soumpasis, D.M., (1994b). In Structural Biology: The State of the Art, R.H. Sarma and M.H. Sarma, editors. Adenine Press, Schenectady, NY, Vol 2, p273.

    Google Scholar 

  • Hummer, G., & Soumpasis, D.M., (1994c). Statistical mechanical treatment of the structural hydration of biological macromolecules: results for B-DNA. Phys. Rev. E., 50:5085–5095.

    Article  CAS  Google Scholar 

  • Hummer, G., Garcia, A.E., & Soumpasis, D.M., (1995a). Hydration of nucleic acid fragments: Comparison of theory and experiment for high resolution crystal structures of RNA, DNA and DNA-drug complexes. Biophys. J., 68(5): 1639–1652.

    Article  PubMed  CAS  Google Scholar 

  • Hummer, G., Soumpasis, D.M., & Garcia, A.E., (1995b). Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems. In Nonlinear Excitations in Biomolecules, M. Peyrard, editor. Springer, Paris. pp83–99.

    Google Scholar 

  • Jorgensen, W.L., (1981). Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water. J. Am. Chem. Soc., 103:335–340. See also

    Article  CAS  Google Scholar 

  • Jorgensen, W.L., Chandrasekhar, J., & Madura, J.D., (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79:926–935.

    Article  CAS  Google Scholar 

  • Langan, P., Forsyth, V.T., Mahendrasingam, A., Pigram, W.J., Mason, S.A., & Fuller, W., (1992). A high angle neutron fibre diffraction study of the hydration of the A conformation of the DNA double helix. J. Biomol. Struct. Dyn., 10:489–503.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., (1989). Molecular dynamics of macromolecules in water. Chemica Scripta, 29A: 197–203.

    CAS  Google Scholar 

  • Lindsay, S.M., Powell, J.W., & Rupprecht, A., (1984). Observation of low-lying Raman bands in DNA by tandem interferometry. Phys. Rev. Lett., 53:1853–1855. For a review see,

    Article  CAS  Google Scholar 

  • S.M. Lindsay, (1987). In Structure and Dynamics of Nucleic Acids, Proteins and Membranes, E. Clementi and S. Chin, editors. Plenum, New York.

    Google Scholar 

  • Marky, L.A., & Kupke, D.W., (1989). Probing the hydration of the minor groove of AT synthetic DNA polymers by volume and heat changers. Biochem., 28:9982–9988.

    Article  CAS  Google Scholar 

  • Nemethy, G., & Scheraga, H.A., (1962). The structure of water and hydrophobic bonding in proteins III: The thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem., 66:1773–1789.

    Article  CAS  Google Scholar 

  • Otting, G., & Wüthrich, K., (1989). Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. J. Am. Chem. Soc., 111:1871–1875.

    Article  CAS  Google Scholar 

  • Otting, G., Liepinsh, E., & Wüthrich, K., (1991). Protein hydration in aqueous solution. Science, 254:974–980.

    Article  PubMed  CAS  Google Scholar 

  • Schoenborn, B.P., (1988). The solvent effects in protein crystals. A neutron diffraction analysis of solvent and ion density. J. Mol. Biol., 201:741–749.

    Article  PubMed  CAS  Google Scholar 

  • Soumpasis, D.M., (1993). In Computation of Biomolecular Structures. Achievements, Problems and Perspectives. D.M. Soumpasis and T.M. Jovin, editors. p223. Springer, Berlin.

    Chapter  Google Scholar 

  • Soumpasis, D.M., Garcia, A.E., Klement, R., & Jovin, T.M., (1990). The potential-of-mean-force (PMF) approach for treating ionic effects on biomolecular structures in solution. In Theoretical Biochemistry and Molecular Biophysics, D.L. Beveridge and R. Lavery, editors. Adenine Press, Schenectady, NY, Vol. 1, pp343–360.

    Google Scholar 

  • Tao, N.J., (1988) Ph.D. Thesis, Arizona State University, Tempe, Arizona (USA).

    Google Scholar 

  • Tao, N.J., Lindsay, S.M., & Rupprecht, A., (1987). The dynamics of the DNA hydration shell at gigahetz frequencies. Biopolymers, 26:171–188.

    Article  PubMed  CAS  Google Scholar 

  • Teeter, M.M., (1991). Water-protein interactions: theory and experiment. Ann. Rev. Biophys. Biophys. Chem., 20:577–600.

    Article  CAS  Google Scholar 

  • Tominaga, Y., Shida, M., Kubota, K., Urabe, H., Nishimura, Y., & Tsuboi, M., (1985). Coupled dynamics between DNA double helix and hydrated water by low frequency Raman spectroscopy. J. Chem. Phys., 83:5972–5975.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

García, A.E., Hummer, G., Soumpasis, D.M. (1996). Theoretical Description of Biomolecular Hydration. In: Schoenborn, B.P., Knott, R.B. (eds) Neutrons in Biology. Basic Life Sciences, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5847-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5847-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7680-4

  • Online ISBN: 978-1-4615-5847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics