Skip to main content
  • 246 Accesses

Abstract

Progress in inertial fusion research in the last 30 years has been briefly described. As Edward Teller said, the ICF research has turned around the third corner to approach the homestretch for the scientific feasibility. Fusion will be the world’s ultimate energy source, inexhaustible fuel, worldwide availability, environmental benign and high safety potential, if it can be harnessed economically. Fusion must respond to compete in the marketplace of the 21st century. In this sense, we should have a long prospect of research and development. The concept of ICF has a strong importance for the fusion energy.

The laser fusion has made a great progress in the last 30 years. On the other hand, there has been an active international collaboration to develop the magnetic confinement fusion power research. This kind of action was not observed in the ICF society. Recent inertial fusion experiments on the direct driven fusion at Osaka have successfully got the high fusion neutron yield 1013 and the high density compression of 1000 times normal fuel density. The electron degeneracy of core plasma is also observed. The U.S. Halite / Centurion program informed us of indirect driven fusion which will be attainable the high gain for less than the 10MJ of driver. However, the data base is not yet clear to determine the details for high gain. This question can only be solved by using a large laser facility. The U.S. policy on indirect driven fusion program has come to provide the National Ignition Facility with the declassificaton of the experimental data. Experimental and theoretical progress in ICF in the international community has suggested that the time has come to eliminate unnecessary restrictions on information relevant to the energy applications of ICF. Now ICF is in the second stage of the development. The ignition and breakeven are in a scope of the program. The international collaboration will be initiated.

Now, to show the importance of the international collaboration, the world progress of inertial fusion is briefly reviewed setting particular remarks on the Japanese efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamanaka, C, Yamanaka, T., Sasaki, T., Yoshida, K and Waki, M. and Kang, H. B., (1972), “Anomalous heating of a plasma by a laser”, Phys. Rev., A-6, 2335. 2

    ADS  Google Scholar 

  2. Max, C.E., (1982), in Laser Plasma Interaction, Balian, R. and Adam, J. C, pp.388. (Les Houches, Section X X X IV, North Holland, Pub.).3

    Google Scholar 

  3. Estabrook, K. G., Valeo, E.J. and Kruer, W. L., (1975), “Two-dementional relativistics simulations of resonance absorption”, Phys. Fluids, 18, 1151.; Takabe, H. and Mulser, P. (1982),“Self-consistent treatment of resonance absorption in a streaming plasma”, Phys. Fuilds, 25, 2304.4

    Article  ADS  Google Scholar 

  4. Forslund, D. W., Kindel, J.M. and Lee, K. (1977), “Theory of hot-electron spectra at high laser intensity”, Phys. Rev. Lett., 39, 284.; Estabrook, K. and Kruer, W. L., (1978),“Properties of resonantly heated electron distributions”, Phys. Rev. Lett., 40 42.5

    Article  ADS  Google Scholar 

  5. Spritzer, L. and Härm, R. (1953), “Transport phenomena in a completely ionized gas”, Phys. Rev., 89, 977.6

    Article  ADS  Google Scholar 

  6. Manheimer, W. M. (1977), “Energy flux limitation by ion acoustic turbulence in laser fusion schemes”, Phys. Fluids, 20, 265.7

    Article  ADS  Google Scholar 

  7. Takabe, H. and Mulser, P. (1982), “Self-consistent treatment of resonance absorption in a streaming plasma”, Phys. Fuilds, 25, 2304.8

    Article  ADS  MATH  Google Scholar 

  8. Zel’dovich, Ya. B. and Raizer, Yu. P. (1966), “Physics of Shock Waves and High-temperature Hydrody-namic Phenomena” (Academic, New York).; Mihalas, D. and Mihalas, B. W. (1984),“Foundation of Radiation Hydrodynamics”, Oxford Univ. Press, Oxford.9

    Google Scholar 

  9. More, R. M. (1981), “Atomic Physics in Inertial Confinement1` Fusion”, Res. Rep., UCRL-84991, LLNL.10

    Google Scholar 

  10. Bodner, S. E.,(1981), “Critical elements of high gain laser fusion”, J. Fusion Energy, 1, 221. 11

    Article  ADS  Google Scholar 

  11. Bobin, J. L. (1971) “Flame propagation and overdense heating in a laser created plasma”, Phys. Fluids, 14, 2341.; Takabe, H., Nishihara, K. and Taniuti, T. (1978),“Deflagation waves in laser compression I”, J. Phys. Jpn., 45, 2001.12

    Article  ADS  Google Scholar 

  12. Takabe, H., Nishihara, K. and Taniuti, T. (1978), “Deflagation waves in laser compression I”, J. Phys. Jpn., 45, 2001.;Ahlborn, B., Key, M. H. and Bell, A. R. (1982),“An analytic model for laser-driven ablative implosion of spherical shell targets”, Phys. Fluids, 25, 541.13

    Article  ADS  Google Scholar 

  13. Takabe, H., Montierth, L. and Morse, R. L. (1983), “Self-consistent eigenvalue analysis of Rayleigh-Taylor instability in an ablating plasma”, Phys. Fuids, 26, 2299.,; Takabe, H., Mima, K., Motierth, L. and Morse, R. L. (1985),“Self-consistent growth rate at the Rayleigh-Taylor instability in an ablatively acceleraing plasma”, Phys. Fuids, 28, 3676.; Emery, M. H., Gardner, J. H. and Boris, J. P., (1982), “Nonlinear aspects of hydrodynamic instabilities in laser ablation”, Appl. Phys. Lett., 41, 808.; Emery, M. H., Gardner, J. P. and Bodner, S. E., (1986),“Strongly inhibited Rayleigh-Taylor growth with 0.25um lasers”, Phys. Rev. Lett., 57, 703.; McCrory, R. L., Montierth, L., Morse, R. L. and Verdon, C. P. (1981),“Nonlinear evolution of ablation-driven Rayleigh Taylor instability”, Phys. Rev. Lett., 46, 336.l4

    Article  ADS  MATH  Google Scholar 

  14. Hattori, F., Takabe, H. and Mima, K.,(1986), “Rayleigh-Taylor instability in a spherically stagnating system”, Phys. Fluids, 29, 1719.15

    Article  ADS  MATH  Google Scholar 

  15. Yamanaka, C, Nakai, S., Yabe, T., Nishihara, K., Uchida, S., Izawa, Y., Norimatsu, T., Miyanaga, N., Azechi, H., Nakai, M., Takabe, H., Jitsuno, J., Mima, K., Nakatsuka, M., Sasaki, T, Yamanaka, M., Kato, Y, Mochizuki, T., Kitagawa, Y, Yamanaka, T. and Yoshida, K. (1986), “Laser implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing”, Phys. Rev. Lett. 56, 1575.; Takabe, H. and Mima, K. (1987),“Numerical study of ignition by stagnation-free implosion”, ILE-Report, 8713, ILE, Osaka Univ..16

    Article  ADS  Google Scholar 

  16. Fraley, G. S., Linnerberg, E. J., Mason, R. J. and Morse, R. L. (1974), “Thermonuclear burn characteristics of compressed deutrium-tritium microspheres”, Phys. Fluids, 17, 474.l7

    Article  ADS  Google Scholar 

  17. Bodner, S. E., (1981), “Critical elements of high gain laser fusion”, J. Fusion Energy, 1, 221.18

    Article  ADS  Google Scholar 

  18. Kruple, W. F. (1974), “Induced-emission cross sections in neodymium laser glasses”, IEEE J. of Quant. Elect., QE-10, 450.; Stokowski, S. E., Saroyan, R. A. and Weber, M. J. (1978),“Nd-doped laser glass spec-troscopic and physical properties”, Lawrence Livermore Laboratory, Misc. Report MS-095.; Yamanaka, C., Kato, Y, Izawa, Y, Yoshida, K., Yamanaka, T., Sasaki, T. et al. (1981),“Nd-doped phosphate glass laser systems for laser fusion research”, IEEE J. of Quant Elect., QE-17, 1639.; Emmett, J. L., Kruple, W. F. and Davis, J. I. (1984),“Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications”, IEEE J. of Quant. Elect., QE-20, 591.; Hunt, J. T. and Speck, D. R. (1989),“Present and future performance of the NOVA laser system”, Optical Engineering, 28, 461.19

    Article  ADS  Google Scholar 

  19. Hunt, J.T., Glass, J.A., Simmons, W.W. and Renard, P.A. (1978), “Suppression of self-focusing through low-pass spatial filtering and relay imaging”, Appl. Opt. 17, 2053.20

    Article  ADS  Google Scholar 

  20. Eidman, K., Sachsenmair, P., Salzman, H. and Sigel, R. (1972), “Optical isolators for high power giant pulse lasers”, J. of Phys. E, 5, 56.21

    Article  ADS  Google Scholar 

  21. Yamanaka, C. and Nakai, S. (1986), “Thermonuclear neutron yield of 1012 achieved with GEKKO XII green laser”, Nature, 319, 757.22

    Article  ADS  Google Scholar 

  22. Yamanaka, C, Yamanaka, T., Sasaki, T., Yoshida, K and Waki, M. and Kang, H. B., (1972), “Anomalous heating of a plasma by a laser”, Phys. Rev., A-6, 2335.; Nuckolls, J., Wood, L.,Thiessen A. and Zimmerman, G. (1972),“Laser compression of matter to super-high densities: Thermonuclear applications”, Nature, 239r 139.23

    ADS  Google Scholar 

  23. Craxton, R. S. (1981), “High efficiency frequency tripling scheme for high power Nd:glass lasers”, IEEE J. ofQunt. Elect., QE-17, 1771.24

    Article  ADS  Google Scholar 

  24. Kato, Y, Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y, Nakatsuka, M. and Yamanaka, C. (1984), “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression”, Phys. Rev. Lett, 53, 1057.25

    Article  ADS  Google Scholar 

  25. Lehmberg, R. H., Schmitt, A. J. and Bodner, S. E. (1987), “Theory of induced spatial incoherence”, J. of Appl. Phys. 62, 2680.26

    Article  ADS  Google Scholar 

  26. Den, X., Liang, X., Chen, Z., Yu, W. and Ma, R. (1986), “Uniform illumination of large targets using a lens array”, Applied Optics, 25, 377.27

    Article  ADS  Google Scholar 

  27. Goldstein, S. A., Cooperstein, G., Lee, R., Mosher, D. and Stephanakis, S. J. (1987), “Focusing of intense ion beams from pinched-beam diodes”, Phys. Rev. Lett., 40, 1504.; Johnson, D. J., Kuswa, G. W., Farnsworth, A. V., Quintenz, J. P., Leeper, R. J., Burns, E. J. T., et al. (1979),“Production of 0.5-TW proton pulses with a spherical focusing magnetically insulted diode”, Phys. Rev. Lett., 42, 610.28

    Article  ADS  Google Scholar 

  28. Faltens, A., Hoyer, E., Keefe, D. and Laslett, L. J. (1979), “Design/cost study of an induction linac for heavy ions for pellet-fusion”, IEEE Trans. Nuc. Sci., NS-26, 3106.; Fessenden, T. J., Celata, C. M., Faltens, A., Herderson, T, Judd, D. L., Keefe, D. et al. (1987),“Preliminary design of a ∼10MV ion accelerator for HIF research”, Laser and Particle Beams, 5, 457.29

    Article  ADS  Google Scholar 

  29. Müller, R. W.(1988), “RF linac driver for commercial heavy ion beam fusion”, Proc. of 3rd Inertial Confinement Fusion System and Application Colloquiun, Madison.30

    Google Scholar 

  30. Fessenden, T. J., Celata, C. M., Faltens, A., Herderson, T., Judd, D. L., Keefe, D. et al. (1987), “Preliminary design of a ~10MV ion accelerator for HIF research”, Laser and Particle Beams, 5, 457.31

    Article  ADS  Google Scholar 

  31. Yamanaka, C., Nakai, S., Yabe, T., Nishihara, K., Uchida, S., Izawa, Y, Norimatsu, T., Miyanaga, N., Azechi, H., Nakai, M., Takabe, H., Jitsuno, J., Mima, K., Nakatsuka, M., Sasaki, T, Yamanaka, M., Kato, Y, Mochizuki, T., Kitagawa, Y, Yamanaka, T. and Yoshida, K. (1986), “Laser implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing”, Phys. Rev. Lett. 56, 1575.32

    Article  ADS  Google Scholar 

  32. Mima, K. (1988), “High density compression of hollow shell target by green and blue GEKKO XII laser”, Bull. American Phys. Soc, 33,1880.33

    Google Scholar 

  33. Yamanaka, C, Mima, K., Nakai, S., Yamanaka, T., Izawa, Y., Kato, Y. et al. (1987), “Inertial confinement fusion research by GEKKO lasers at ILE Osaka and target design for ignition”, Plasma Phys. and Controll, Nucl. Fusion Res. (IAEA, Vienna, 1986), 3, 33.34

    Google Scholar 

  34. Kacenjan, S., Goldman, L. M., Enterberg, A. and Skupsky, S. (1984), “<pR>measurements in laser-produced implosions using elastically scattered ions,” J. Appl. Phys., 56, 2027.35

    Article  ADS  Google Scholar 

  35. Azechi, H., Miyanaga, N., Stapf, R. O., Itoga, KM Nakaishi, H., Yamanaka, M., Shiraga, H., Tuji, R., Ido, S., Nishihara, K., Izawa, Y, Yamanaka, T. and Yamanaka, C.,(1986), “Experimental determination of fuel density radius product of inertial confinement fusion targets using secondary nuclear fusion reactions”, Appl. Phys. Lett. 49, 555.; Bazov, N. G., Vygovskii, O. B., Gus’kov, S. Yu., ll’in, D. V., Lekovskii, A. A., Rozanov, V. B. and Sherman, V. E. (1986)“Diagnostics of laser fusion plasmas on the basis of the products of secondary fusion reactions”, Sov. J. Plasma Phys. 12, 526.; Cable, M. D., Lane, S. M., Glendinning, S. G., Lerche, R. A., Singh, M. S., Munro, D. H., Hatchett, S. P., Estabrook, K. G. and Suter, L. J., (1986),“Implosion experiments at NOVA”, Bull. Am. Phys. Soc. 31, 1461.; Gamalii, E. G., Gus’kuv, S. Yu., Krok-hin, O. N. and Rozanov, V. B. (1975),“Possibility of determining the characteristics of laser plasma by measuring the neutrons of the DT reaction”, JETP Lett. 21, 70.36

    Article  ADS  Google Scholar 

  36. Mochizuki, T., Yabe, T., Okada, K., Hamada, M., Ikeda., N. and Yamanaka, C. (1986), “Atomic-number dependence of soft-x-ray emission from various targets irradiated by a 0.53-μm-wavelength laser”, Phys. Rev. A-33, 525.37

    ADS  Google Scholar 

  37. Mochizuki, T., Yabe, T., Tanaka, K. A., Yamanaka, C, Sigel, R., Tsakiris, G. D. et al. (1987), “X-ray confinement in a laser heated cavity”, Nuclear Fusion Suppl. 3, 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamanaka, C. (1997). Progress in Inertial Fusion Research. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics