Skip to main content

Abstract

Ignitor is a compact high magnetic field machine with tight aspect ratio and shaped cross section, where large plasma currents can be produced. High plasma densities, strong Ohmic heating, good confinement of particles and energy, adequate plasma purity, and stability against MHD modes are expected on the basis of the machine characteristics.

The main goals of the machine are the confinement of the fusion produced a-particles and the Ohmic heating of D-T plasmas up to ignition at relatively low peak temperatures (T eo ≃ Tio ≲ 15 keV) with the production of significant amounts of fusion power (≈ 100 MW). An ICRH system with PRF ≲ 18 MW is adopted to accelerate the approach to D-T burn conditions and to control at the same time the evolution of the current density, to produce significant fusion power in D-3He plasmas, and to investigate the access to the high-β second stability region

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Boxman, B. Coppi, L. C. De Kock et al., “Low and High Density Operation of Alcator,” Proc. 7th Eur. Conf. on Plasma Physics, 1975, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2,14 (1976).

    Google Scholar 

  2. B. Coppi, “High Current Density Tritium Burner,” Comm. Plasma Phys. Cont. Fusion 3, 2 (1977).

    Google Scholar 

  3. B. Coppi, Vuoto 18, 153 (1988).

    Google Scholar 

  4. B. Coppi and F. Pegoraro, ll Nuovo Cimento 9D, 691 (1987).

    Article  ADS  Google Scholar 

  5. B. Coppi, R. Englade, M. Nassi et al., “Current Density Transport, Confinement and Fusion Burn Conditions,” Proc. 13th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Washington D. C, USA, 1990,1. A. E. A., Vienna, 2, 337 (1991).

    Google Scholar 

  6. B. Coppi, M. Nassi and the Ignitor Project Group, “Physics Criteria and Design Solutions for an Advanced Ignition Experiment,” M. I. T. Report PTP-92/16 R. L. E., Cambridge, MA (1992).

    Google Scholar 

  7. B. Coppi, M. Nassi and L. E. Sugiyama, Physica Scripta 45, 112 (1992).

    Article  ADS  Google Scholar 

  8. A. C. Coppi and B. Coppi, Nucl Fusion 32, 205 (1992).

    Article  ADS  Google Scholar 

  9. B. Coppi, A. Taroni and G. Cenacchi, in Plasma Physics and Controlled Nuclear Fusion Research 1978, Proc. of the 7th Int. Conf Innsbruck, 1, 487 (1977).

    Google Scholar 

  10. F. Romanelli, G. Vlad and F. Zonca, ENEA Report (in preparation).

    Google Scholar 

  11. F. Carpignano, B. Coppi, P, Detragiache et al., “ICRF System and Plasma Performance of the Ignitor Experiments,” lOth Topical Conference on Radio Frequency Power in Plasma, Boston, MA, 1993.

    Google Scholar 

  12. B. Coppi, M. Nassi and L. E. Sugiyama, Fusion Technology 21, 1612 (1992).

    Google Scholar 

  13. L. E. Sugiyama and M. Nassi, Nucl Fusion 32, 387 (1992).

    Article  ADS  Google Scholar 

  14. B. Coppi, P. Detragiache, S. Migliuolo et al., “Reconnection and Transport in High Temperature Regimes,” Proc. 14th Int Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg, Germany, 1992, paper I.A.E.A.-CN-56/D-3-1(C), Vol. 2 (1993).

    Google Scholar 

  15. A. Airoldi and G. Cenacchi, Fusion Technology 25, 278 (1994).

    Google Scholar 

  16. S. C. Jardin, N. Pomphrey and J. Delucia, J. Comp. Phys. 66, 481 (1986).

    Article  ADS  MATH  Google Scholar 

  17. G. Cenacchi and A. Taroni, JET-IR(88)03 (1988).

    Google Scholar 

  18. B. Coppi and E. Mazzucato, Phys. Rev. Lett. 71A, 337 (1979).

    ADS  Google Scholar 

  19. R. C. Englade, Nucl. Fusion 29, 999 (1989).

    Article  Google Scholar 

  20. B. Coppi, Comm. Plasma Phys. Cont. Fusion 12, 319 (1989).

    Google Scholar 

  21. B. Coppi, P. Detragiache, S. Migliuolo et al., Fusion Technology, 25, 353 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pegoraro, F. (1997). Ignition Physics and the Ignitor Project. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics