Skip to main content

Glycerophosphoinositol-4-Phosphate in Intracellular Signalling

  • Chapter
Frontiers in Bioactive Lipids

Abstract

Cell Membrane Lipids and Signal Transduction Over the past two decades, the build-up of a complex understanding of the metabolism of cell membrane lipids has seen the development of the roles of these lipids from solely ‘passive’ structural components of the membrane bilayer to ‘active’ regulators of cell function. These roles have included the fields of lipid-protein interaction, membrane biogenesis and membrane transport (for reviews see Casey, 1995; Liscovitch and Cantley, 1995; Milligan et al., 1995), but it is in that of signal transduction (for reviews see Bell and Burns, 1991; Nishizuka, 1992, 1995; Billah, 1993; Divecha and Irvine, 1995; Liscovitch and Cantley, 1995; Milligan et al., 1995; Corda and Falasca, 1996) where novel lipid second messengers continue to be described (Panayotou and Waterfield, 1992; Cuadrado et al., 1993; Hannun, 1994; Su et al., 1994; Moolenaar, 1995; Pushkareva et al., 1995; Falasca et al., 1996a). Thus membrane lipids are acted upon by intracellular phospholipases (phospholipase A2 (PLA2), phospholipase C (PLC) and phospholipase D), leading to the production of lipid second messengers that are involved in the modulation of different functional cellular responses (Exton, 1990; Dennis et al., 1991; Cockcroft and Thomas, 1992; Nishizuka, 1992; Berridge, 1993; Billah, 1993; Glaser et al., 1993; Iacovelli et al., 1993; Mayer and Marshall, 1993; Dennis, 1994; Divecha and Irvine, 1995; Lee and Rhee, 1995). Activation of one of these phospholipases, PLA2, leads to the mobilisation of arachidonic acid from an sn-2 linkage of phosphatidylcholine (PtdCho), phosphatidyl-ethanolamine (PtdEth) and phosphatidylinositol (PtdIns) in numerous mammalian cell types (Van den Bosch, 1980; Irvine, 1982), which, in turn, serves as a substrate for the production of other cellular second messengers, such as the prostaglandins and leukotrienes (Piomelli and Greengard, 1990; Piomelli, 1993; Khan et al., 1995). In the case of PLA2 activation, this is also accompanied by the formation of biologically active lysolipids that have been shown to be mitogens in several cell lines, including lysophosphatidic acid (LysoPtdCOOH; Moolenaar, 1995), lysophosphatidylinositol (LysoPtdIns; Falasca and Corda, 1994) and lysophosphatidylcholine (LysoPtdCho; Asaoka et al., 1991). These lysolipids themselves are the substrates for lysophospholipases that release the fatty acid from the sn-1 linkage, thus producing glycerophospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso, T., and Santos, E., 1990, Increased intracellular glycerophosphoinositol is a biochemical marker for transformation by membrane-associated and cytoplasmic oncogenes, Biochem. Biophys. Res. Commun., 171:14.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, T., Morgan, R.O., Marvizon, J.C., Zarbl, H., and Santos, E., 1988, Malignant transformation by ras and other oncogenes produces common alterations in inositol phospholipid signaling pathways, Proc. Natl. Acad. Sci. USA, 85:4271.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, W.B., Gallo, M., Wilson, J., Lovelace, E., and Pastan, I., 1979, Effect of epidermal growth factor on prostaglandin E1-stimulated accumulation of cyclic AMP in fibroblastic cells, FEBS Lett., 102:329.

    Article  PubMed  CAS  Google Scholar 

  • Angus, W.W., and Lester, R.L., 1975, The regulated catabolism of endogenous and exogenous phosphatidyl-inositol by Saccharomyces cerevisiae leading to extracellular glycerophosphorylinositol and inositol, J. Biol. Chem., 250:22.

    PubMed  CAS  Google Scholar 

  • Asaoka, Y., Oka, M., Yoshida, K., and Nishizuka, Y., 1991, Lysophosphatidylcholine as a possible second messenger synergistic to diacylglycerol and calcium ions for T-lymphocyte activation, Biochem. Biophys. Res. Commun., 178:1378.

    Article  PubMed  CAS  Google Scholar 

  • Bell, R.M., and Burns, D.J., 1991, Lipid activation of protein kinase C, J. Biol. Chem., 266:4661.

    PubMed  CAS  Google Scholar 

  • Bender, J.L., and Neer, E.J., 1983, Properties of the adenylate cyclase catalytic unit from caudate nucleus, J. Biol. Chem., 258:2432.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., 1993, Inositol trisphosphate and calcium signalling, Nature, 361:315.

    Article  PubMed  CAS  Google Scholar 

  • Billah, M.M., 1993, Phospholipase D and cell signaling, Curr. Opin. Immunol, 5:114.

    Article  PubMed  CAS  Google Scholar 

  • Bosch, F., Bouscarel, B., Slaton, J., Blackmore, P.F., and Exton, J.H., 1986, Epidermal growth factor mimics insulin effects in rat hepatocytes, Biochem. J., 239:523.

    PubMed  CAS  Google Scholar 

  • Bunce, C.M., French, P.J., Allen, P., Mountford, J.D., Moor, B., Greaves, M.F., Micheli, R.H., and Brown, G., 1993, Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts, Biochem. J., 289:667.

    PubMed  CAS  Google Scholar 

  • Casey, P.J., 1995, Protein lipidation in cell signaling, Science, 268:221.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Thomas, G.M.H., 1992, Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors, Biochem. J., 288:1.

    PubMed  CAS  Google Scholar 

  • Corda, D., and Falasca, M., 1996, Glycerophosphoinositols as potential markers of ras-induced transformation and novel second messengers, Anticancer Res., 16:in press.

    Google Scholar 

  • Corda, D., Falasca, M., Iacovelli, L., Carvelli, A., D’Arcangelo, D., and Ramakrishna, V., 1994, Novel cellular activities of phosphoinositide metabolites originated by the action of phospholipase A2, in: GTPase-Controlled Molecular Machines, D. Corda, H. Hamm, and A. Luini, eds., Ares Serono Symposia Publications, Rome.

    Google Scholar 

  • Cruz-Rivera, M., Bennet, C.F., and Crooke, S.T., 1990, Glycerol-3-phospho-D-myo-inositol 4-phosphate (Gro-PIP) is an inhibitor of phosphoinositide-specific phospholipase C, Biochim. Biophys. Acta, 1042:113.

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado, A., Carnero, A., Dolfi, F., Jiménez, B., and Lacal, J.C, 1993, Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors, Oncogene, 8:2959.

    PubMed  CAS  Google Scholar 

  • Dennis, E.A., 1994, Diversity of group types, regulation, and function of phospholipase A2, J. Biol. Chem., 269:13057.

    PubMed  CAS  Google Scholar 

  • Dennis, E.A., Rhee, S.G., Billah, M.M., and Hannun, Y.A., 1991, Role of phospholipases in generating lipid second messengers in signal transduction, FASEB J., 5:2068.

    PubMed  CAS  Google Scholar 

  • Divecha, N., and Irvine, R.F., 1995, Phospholipid signaling, Cell, 80:269.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J.H., 1990, Signaling through phosphatidylcholine breakdown, J. Biol. Chem., 265:1.

    PubMed  CAS  Google Scholar 

  • Falasca, M., and Corda, D., 1994, Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras transformed epithelial cells, Eur. J. Biochem., 221:383.

    Article  PubMed  CAS  Google Scholar 

  • Falasca, M., Carvelli, A., Iurisci, C., Qiu, R.-G., Symons, M.H., and Corda, D., 1996a, Growth factor-induced formation of glycerophosphoinositol-4-phosphate, a putative novel intracellular messenger that inhibits adenylyl cyclase activity, submitted.

    Google Scholar 

  • Falasca, M., Marino, M., Carvelli, A., Iurisci, C, Leoni, S., and Corda, D., 1996b, Changes in the levels of glycerophosphoinositols during differentiation of hepatic and neuronal cells, Eur. J. Biochem., in press.

    Google Scholar 

  • Falasca, M., Silletta, M.G., Carvelli, A., Di Francesco, A.L., Fusco, A., Ramakrishna, V., and Corda, D., 1995, Signalling pathways involved in the mitogenic action of lysophosphatidylinositol, Oncogene, 10:2113.

    PubMed  CAS  Google Scholar 

  • French, P.J., Bunce, CM., Stephens, L.R., Lord, J.M., McConnell, F.M., Brown, G., Creba, J.A., and Micheli, R.H., 1991, Changes in the levels of inositol lipids and phosphates during the differentiation of HL-60 promyelocytic cells towards neutrophils or monocytes, Proc. R. Soc. Lond. B Biol. Sci., 245:193.

    Article  CAS  Google Scholar 

  • Glaser, K.B., Mobilio, D., Chang, J.Y., and Senko, N., 1993, Phospholipase A2 enzymes: regulation and inhibition, Trends Pharmacol. Sci., 14:92.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y.A., 1994, The sphingomyelin cycle and the second messenger function of ceramide, J. Biol. Chem., 269:3125.

    PubMed  CAS  Google Scholar 

  • Hawkins, P.T., Eguinoa, A., Qiu, R.-G., Stokoe, D., Cooke, F.T, Walters, R., Wennström, S., Claesson-Welsh, L., Evans, T., Symons, M., and Stephens, L., 1995, PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase, Curr. Biol., 5:393.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P.T., Stephens, L.R., and Piggot, J.R., 1993, Analysis of inositol metabolites produced by Saccharomyces cerevisiae in response to glucose stimulation, J. Biol. Chem., 268:3374.

    PubMed  CAS  Google Scholar 

  • Iacovelli, L., Falasca, M., Valitutti, S., D’Arcangelo, D., and Corda, D., 1993, Glycerophosphoinositol 4-phosphate, a putative endogenous inhibitor of adenylylcyclase, J. Biol. Chem., 268:20402.

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., 1982, How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J., 204:3.

    PubMed  CAS  Google Scholar 

  • Khan, W.A., Blobe, G.C., and Hannun, Y.A., 1995, Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C, Cell Signal., 7:171.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.B., and Rhee, S.G., 1995, Significance of phosphatidylinositol hydrolysis and regulation of phospholipase C isozymes. Curr. Opin. Cell Biol., 7:183.

    Article  PubMed  CAS  Google Scholar 

  • Leoni, S., Spagnuolo, S., Dini, L., and Conti Devirgiliis, L., 1987, Regulation of amino acid transport in isolated hepatocytes during development, J. Cell. Physiol., 130:103.

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch, M., and Cantley, L.C., 1995, Signal transduction and membrane traffic: the PITP/phosphoinositide connection, Cell, 81:659.

    Article  PubMed  CAS  Google Scholar 

  • Luciani, S., Antolini, M., Bova, S., Cargnelli, G., Cusinato, G., Bebetto, P., Trevisi, L., and Varotto, R., 1995, Inhibition of cardiac sarcolemmal sodium-calcium exchanger by glycerophosphoinositol 4-phosphate and glycerophosphoinositol 4,5-bisphosphate, Biochem. Biophys. Res. Commun., 206:674.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, R.J., and Marshall, L.A., 1993, New insights on mammalian phospholipase A2 (s); comparison of arachidonoyl-selective and-nonselective enzymes, FASEB J., 7:339.

    PubMed  CAS  Google Scholar 

  • Milligan, G., Parenti, M., and Magee, A.I., 1995, The dynamic role of palmitoylation in signal transduction, Trends Biochem Sci., 20:181.

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar, W.H., 1995, Lysophosphatidic acid, a multifunctional phospholipid second messenger, J. Biol Chem., 270:12949.

    PubMed  CAS  Google Scholar 

  • Mountford, J.C., Bunce, P.J., French, P.J., Micheli, R.H., and Brown, G., 1994, Intracellular concentrations of inositol, glycerophosphoinositol and inositol pentakisphosphate increase during haemopoietic cell differentiation, Biochim. Biophys. Acta, 1222:101.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, C.A., and Seamon, K.B., 1986, Binding of [3H]-forskolin to human platelet membranes. Regulation by guanyl-5’-yl imidodiphosphate, NaF, and prostaglandins E1 and D2, J. Biol. Chem., 261:13469.

    PubMed  CAS  Google Scholar 

  • Nemenoff, R.A., Winitz, S., Qian, N.-X., Van Putten, V., Johnson, G.L. and Heasley, L.E., 1993, Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C, J. Biol. Chem., 268:1960.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1992, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C, Science, 258:607.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1995, Protein kinase C and lipid signaling for sustained cellular responses, FASEB. J., 9:484.

    PubMed  CAS  Google Scholar 

  • Panayotou, G., and Waterfield, M.D., 1992, Phosphatidylinositol 3-kinase: a key enzyme in diverse signalling processes, Trends Cell. Biol., 2:358.

    Article  PubMed  CAS  Google Scholar 

  • Pang, L., Sawada, T., Decker, S.J., and Saltiel, A.R., 1995, Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor, J. Biol. Chem., 270:13585.

    Article  PubMed  CAS  Google Scholar 

  • Parker, P.J., 1995, Curr. Biol., 5:577.

    Article  PubMed  CAS  Google Scholar 

  • Patten, J.L., Pessoa-Brandao, L., and Henry, S.A., 1995, Production and reutilization of an extracellular phosphatidylinositol catabolite, glycerophosphoinositol, by Saccharomyces cerevisiae, J. Bacteriol., 177: 3379.

    Google Scholar 

  • Peppelenbosch, M.P., Qiu, R.-G., de Vries-Smits, A.M.M., Tertoolen, L.G.J., de Laat, S.W., McCormick, F., Hall, A., Symons, M.H., and Bos, J.L., 1995, Rac mediates growth factor-induced arachidonic acid release, Cell, 81:849.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli, D., 1993, Arachidonic acid in cell signaling, Curr. Opin. Cell Biol., 5:274.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli, D., and Greengard, P., 1990, Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling, Trends Pharmacol. Sci., 11:367.

    Article  PubMed  CAS  Google Scholar 

  • Pushkareva, M., Obeid, L.M., and Hannun, Y.A., 1995, Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol. Today, 16:294.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, R.-G., Chen, J., Kirn, D., McCormick, F., and Symons, M., 1995, An essential role for Rac in Ras transformation, Nature, 374:457.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S.V., 1992, Melittin resistance: a counterselection for ras transformation, Oncogene, 7:193.

    PubMed  CAS  Google Scholar 

  • Su, Y., Rosenthal, D., Smulson, M., and Spiegel, S., 1994, Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts, J. Biol. Chem., 269:16512.

    PubMed  CAS  Google Scholar 

  • Sutkowski, E.M., Tang, W.-J., Broome, C.W., Robbins, J.D., and Seamon, K.B., 1994, Regulation of forskolin interactions with type I, II, V, and VI adenylyl cyclases by Gs alpha, Biochemistry, 33:12852.

    Article  PubMed  CAS  Google Scholar 

  • Valitutti, S., Cucchi, P., Colletta, G., Di Filippo, C., and Corda, D., 1991, Transformation by the k-ras oncogene correlates with increases in phospholipase A2 activity, glycerophosphoinositol production and phosphoinositol lipid synthesis in thyroid cells, Cell. Signal., 3:321.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bosch, H., 1980, Intracellular phospholipases, Biochem. Biophys. Acta, 604:191.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berrie, C.P., Falasca, M., Carvelli, A., Iurisci, C., Corda, D. (1996). Glycerophosphoinositol-4-Phosphate in Intracellular Signalling. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics