Skip to main content

The Beta Subunit, Kvβ1.2, Acts as a Rapid Open Channel Blocker of NH2-Terminal Deleted Kv1.4 α-Subunits

  • Chapter
Analytical and Quantitative Cardiology

Abstract

A recently discovered class of ancillary subunits has been shown to modify the inactivation properties of α-subunits belonging to the Kv1 family of potassium channels. One of these subunits, Kvß1.2, modifies intrinsic α-subunit C-type inactivation. N-type inactivation and open channel block have been proposed to increase the rate of development of C-type inactivation. We demonstrate here that Kvß1.2 has kinetic properties which are consistent with rapid open channel block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin AL, Huxley AF. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol (Lond) 1952;116:497–506.

    CAS  Google Scholar 

  2. Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol Rev. 1992;72:S69–S88.

    PubMed  CAS  Google Scholar 

  3. Jan LY, Jan YN. Potassium channels and their evolving gates. Nature 1994;371:119–122.

    Article  PubMed  CAS  Google Scholar 

  4. Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 1990;250:533–538.

    Article  PubMed  CAS  Google Scholar 

  5. Zagotta WN, Hoshi T, Aldrich RW. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 1990;250:568–571.

    Article  PubMed  CAS  Google Scholar 

  6. Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxy-terminal region. Neuron 1991;7:547–556.

    Article  PubMed  CAS  Google Scholar 

  7. Busch AE, Hurst RA, North RA, Adelman JP, Kavanaugh MP. Current inactivation involves a histidine residue in the pore of the rat lymphocyte channel RGK5. Biochem Biophys Res Comm 1991;179:1384–1390.

    Article  PubMed  CAS  Google Scholar 

  8. Choi K, Aldrich RW, Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-gated K+ channels. Proc Natl Acad Sci (USA) 1991;88:5092–5095.

    Article  CAS  Google Scholar 

  9. Lopez-Barneo I, Hoshi T, Heinemann SH, Aldrich RW. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors and Channels 1993;1:61–71.

    PubMed  CAS  Google Scholar 

  10. DeBiasi M, Hartmann HA, Drewe JA, Tagliatella M, Brown AM, Kirsch GE. Inactivation determined by a single site in K+ pores. Pflügers Archiv 1993;422:354–363.

    Article  CAS  Google Scholar 

  11. Gomez-Lagunas F, Armstrong CM. The relation between ion permeation and recovery from inactivation of Shaker B K+ channels. Biophys J 1994;67:1806–1815.

    Article  PubMed  CAS  Google Scholar 

  12. Rasmusson RL, Morales MJ, Castellino RC, Zhang Y, Campbell DL, Strauss HC. C-type inactivation controls recovery in a fast inactivating cardiac K+ channel (Kv1.4) expressed in Xenopus oocytes. J Physiol (Lond) 1995;489:709–721.

    CAS  Google Scholar 

  13. Campbell DL, Rasmusson RL, Qu Y, Strauss HC. The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. J Gen Physiol 1993;101:571–601.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell DL, Rasmusson RL, Comer MB, Strauss HC. The cardiac calcium-independent transient outward potassium current: Kinetics, molecular properties, and role in ventricular repolarization. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology. From Cell to Bedside 1994;83–96.

    Google Scholar 

  15. Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC. In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res 1996;78:1083–1089.

    Article  PubMed  CAS  Google Scholar 

  16. Armstrong CM. Interaction of the tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 1971;58:413–437.

    Article  PubMed  CAS  Google Scholar 

  17. Ruppersberg JP, Frank R, Pongs O, Stocker M. Cloned neuronal IK(A) channels reopen on recovery from inactivation. Nature 1991;353:603–604.

    Article  Google Scholar 

  18. Ruppersberg JP, Stocker M, Pongs O, Heinemann SH, Frank R, Koenen M. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 1991;#52:711–714.

    Article  Google Scholar 

  19. Tseng-Crank J, Yao J-A, Berman MF, Tseng G-N. Functional role of the NH2-terminal cytoplasmic domain of a mammalian A-type K channel. J Gen Physiol 1993;102:1057–1083.

    Article  PubMed  CAS  Google Scholar 

  20. Comer MB, Campbell DL, Rasmusson RL, Lamson DR, Morales MJ, Zhang Y, Strauss HC. Cloning and characterization of an Ito-like channel from ferret ventricle. Am J Physiol 1994;267:H1383–H1395.

    PubMed  CAS  Google Scholar 

  21. Morales MJ, Castellino RC, Crews AL, Rasmusson RL, Strauss HC. A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel α subunits. J Biol Chem 1995;270:6272–6277.

    Article  PubMed  CAS  Google Scholar 

  22. Morales MJ, Wee JO, Wang S, Strauss HC, Rasmusson RL. The N-terminal domain of a K+ channel β-subunit increases the rate of C-type inactivation from the cytoplasmic side of the channel. Proc Natl Acad Sci (USA) 1996;93:15119–15123.

    Article  CAS  Google Scholar 

  23. Castellino RC, Morales MJ, Strauss HC, Rasmusson RL. Time-and voltage-dependent modulation of a Kvl.4 channel by a β subunit (Kvβ3) cloned from ferret ventricle. Am J Physiol 1995;269:H385–H391.

    PubMed  CAS  Google Scholar 

  24. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 1994;369:289–294.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Z, Kiehn J, Yang Q, Brown AM, Wible BA. Comparison of binding and block produced by alternatively spliced Kvβ subunits. J Biol Chem 1996;271:28311–28317.

    Article  PubMed  CAS  Google Scholar 

  26. Ho WK, Earm YE, Lee SK, Brown HF, Noble D. Voltage-and time-dependent block of delayed rectifier K+ current in rabbit sino-atrial node cells by external Ca2+ and Mg2+. J Physiol 1996;494:727–742.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rasmusson, R.L., Wang, S., Castellino, R.C., Morales, M.J., Strauss, H.C. (1997). The Beta Subunit, Kvβ1.2, Acts as a Rapid Open Channel Blocker of NH2-Terminal Deleted Kv1.4 α-Subunits. In: Sideman, S., Beyar, R. (eds) Analytical and Quantitative Cardiology. Advances in Experimental Medicine and Biology, vol 430. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5959-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5959-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7731-3

  • Online ISBN: 978-1-4615-5959-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics