Skip to main content

Abstract

This chapter presents the information needed to design, manufacture and test microelectronic devices which are encapsulated in“plastic” molding compound. The chapter begins with an historical overview, then discusses advantages and disadvantages of plastic versus ceramic packaging. The next three sections present the materials, manufacturing processes for molding and the handling methods of the finished product. This is followed by a section on test and reliability issues. The chapter concludes with a view of the future of plastic encapsulated microcircuits. The interested reader is referred to the books titled“Plastic Encapsulated Microcircuits ” [1], and“Integrated Circuit, Hybrid and Multichip Module Design Guidelines” [2] for more detailed information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. G. Pecht, L. T. Nguyen, and Edward B. Hakim. Plastic-Encapsulated Microelectronics Materials, Processes, Quality, Reliability, and Applications. John Wiley and Sons, New York, 1995

    Google Scholar 

  2. M. G. Pecht. Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability. John Wiley and Sons, New York, 1994

    Google Scholar 

  3. M. Pecht, R. Agarwal, and R. Agarwal. “Plastic Packaged Microcireuits: Quality, Reliability, and Cost Issues,” IEEE Trans. Reliability, pp. 513–517, 1983

    Google Scholar 

  4. N. Sinnadurai. “Advances in Microelectronics Packaging and Interconnection Technologies —Toward a New Hybrid Microelectronics,” Microelectron. J., 16:p. 5, 1985

    Google Scholar 

  5. M. Brizoux, et al. “Plastic-Integrated Circuits for Military Equipment Cost Reduction Challenge and Feasilibity Demonstration,” 40th Electronic Components and Technology Conference, pp. 918–924, 1990

    Google Scholar 

  6. Reliability Analysis Center. A DoD Information Analysis Center Plastic Microcircuit Package—A Technology Review, Reliability Analysis Center, Rome, NY 1992

    Google Scholar 

  7. L. Condra and M. Pecht. “Options for Commercial Microcircuits in Avionic Products,” Defense Electron., pp. 43–46, 1991

    Google Scholar 

  8. M. Nachnani, L. Nguyen, J. Bayan, and J. Bayan. “A Low-Cost Multichip (MCM-L) Packaging Solution,” Proceedings of International Electron Manufacturing Technology Symposium, pp. 464–468, 1993

    Google Scholar 

  9. G. F. Watson. “Plastic-Packaged Integrated Circuits in Military Equipment,” IEEE Spectrum, pp. 46–48, 1991

    Google Scholar 

  10. M. Priore, and J. Farrell. “Plastic Microcircuit Packages: A Technology Review,” Report No. CRTA-PEM, Reliability Analysis Center, Rome, NY, 1992

    Google Scholar 

  11. Texas Instruments. FIFO Surface Mount Package Information, Texas Instruments, 1992

    Google Scholar 

  12. K. C. Griggs. “Plastic Versus Ceramic Integrated Circuits Reliability Study,” Report No. WP86-2020, mRockwell International Collins Group, 1986

    Google Scholar 

  13. C. A. Lidback. “Plastic-Encapsulated Products vs. Hermetically Sealed Products,” Summary Report, Motorola Inc., Government Electronics Group, January 1987

    Google Scholar 

  14. L. R. Villalobos. “Reliability of Plastic-Integrated Circuits in Military Applications,” ESP Report No. PV 620-0530-1, Motorola Government Electronics Group, Tactical Electronics Division, 1989

    Google Scholar 

  15. R. J. Straub. “Automotive Electronic Integrated Circuits Reliability,” Proceedings of Custom Integrated Circuit Conference, pp. 92–94, 1990

    Google Scholar 

  16. L. W. Condra, G. A. Kromholtz, M. G. Pecht, and E. B. Hakim. “Using Plastic-Encapsulated Microcircuits in High Reliability Applications,” Proceedings Annual Reliability and Maintainability Symposium, pp. 481–488, 1994

    Google Scholar 

  17. May C. A., Epoxy Materials. Electronic Materials Handbook, 1-Packaging, ASM Intl. pp. 825–837, 1989

    Google Scholar 

  18. R. K. Rosier. “Rigid Epoxies,” in Electronic Materials Handbook, 1 Packaging, pp. 810–816, ASM International, Materials Park, OH, 1989

    Google Scholar 

  19. P. Proctor and J. Solc. “Improved Thermal Conductivity in Microelectronic Encapsulants,” Proceedings of the 41st IEEE Electronics Components Conference, pp. 835–842, 1991

    Google Scholar 

  20. A. S. Chen, L. T. Nguyen, and S. A. Gee. “Effects of Material Interactions During Thermal Shock Testing on Integrated Circuits Package Reliability,” Proceedings of the IEEE Electronic Components and Technology Conference, pp. 693–700, 1993

    Google Scholar 

  21. A. Ditali and Z. Hasnain. Monitoring Alpha Particle Sources During Wafer Processing, Semiconductor Intl., pp. 136–140, June 1993

    Google Scholar 

  22. N. Kinjo, M. Ogata, K. Nish, and K. Nish. Epoxy Molding Compounds as Encapsulation Materials for Microelectronics Devices, Advances in Polymer Science 88. Springer, Berlin, 1989

    Google Scholar 

  23. B. Bates. “Molding Compounds Technology for Military Applications,” Commercial and Plastic Components in Military Applications Workshop, 1993

    Google Scholar 

  24. J. B. Austin. “Thermal Expansion of Nonmetallic Crystals,” J. Am. Ceramic Soc., 35 (10): pp. 243–253, 1952

    Article  Google Scholar 

  25. B. Yates. Thermal Expansion, pp. 52–70, Plenum Press, New York, 1972

    Book  Google Scholar 

  26. J. Boustani, “Ultra-Low Expansion Metal Matrix Composition,” M.I.T. S.M. Thesis, 1981 Cambridge, MA.

    Google Scholar 

  27. W. H. Kohn. Materials and Techniques for Vacuum Devices, Reinhold Publishing Corp., New York, 1967

    Google Scholar 

  28. F. J. Dance and J. L. Wallace. “Clad Metal Circuit Board Substrates for Direct Mounting of Ceramic Chip Carriers,” Electron. Packag. Prod., 22 (1): pp. 228–232, 236-237, 1982

    Google Scholar 

  29. J. T. Breedis. “New Copper Alloys for Surface Mount Packaging,” J. of Metals, A. I.M.E., p. 48, June 1986

    Google Scholar 

  30. K. E. Manchester and D. W. Bird. “Thermal Resistance, A Reliability Consideration,” I.E.E.E. Trans, on Components, Hybrids, and Manuf. Tech., CHMT-3(4): pp. 362–370, 1980

    Google Scholar 

  31. L. T. Nguyen. “Reactive Flow Simulation in Transfer Molding of IC Packages,” Proceedings of the 43rd Electronic Components and Technology Conference, pp. 375–390, 1993

    Google Scholar 

  32. L. L. Blyler, H. E. Blair, P. Hubbauer, S. Matsuoka, D. S. Pearson, G. W. Poelzing, and R. C. Progelhof. “A New Approach to Capillary Viscometry of Thermoset Transfer Molding Compounds,” Polym. Eng. Sci., 26 (20): p. 1399, 1986

    Article  Google Scholar 

  33. S. Kim. “The Role of Plastic Package Adhesion in IC Performance,” Proceedings of the 41st Electronic Components and Technology Conference, pp. 750–758, 1991

    Google Scholar 

  34. A. Nishimura, S. Kawai, and S. Kawai. “Effect of Leadframe Material on Plastic-Encapsulated Integrated Circuits Package Cracking Under Temperature Cycling,” IEEE Trans. Components Hybrids Manuf. Technol., CHMT-12: pp. 639–645, 1989

    Article  Google Scholar 

  35. A. Hale, H. E. Bair, and C. W. Macosko. “The Variation of Glass Transition as a Function of the Degree of Cure in an Epoxy-Novolac System,” Proceedings of SPE ANTEC, 1116, 1987

    Google Scholar 

  36. A. Hale, M. Garcia, C. W. Macosko, and L. T. Manzione. “Spiral Flow Modelling of a Filled Epoxy-Novolac Molding Compound,” Proceedings of SPE ANTEC, pp. 796–799, 1989

    Google Scholar 

  37. A. Hale. Epoxies Used in the Encapsulation of Integrated Circuits: Rheology, Glass Transition, and Reactive Processing, Thesis, University of Minnesota, Department of Chemical Engineering, 1988

    Google Scholar 

  38. R. Gannamani and M. Pecht, “An experimental study of popcorning in plastic-encapsulated microcircuits,” IEEE Trans. Comp. Packaging Mfgrg. Tech. Part A Vol. 19 No. 2 June 1996, pp. 194–201

    Article  Google Scholar 

  39. R. Munamarty, P. McCluskey, M. Pecht, and M. Pecht. “Popcorning in Fully Populated and Perimeter Plastic Ball Grid Array Packages,” Soldering and Surface Mount Technology, No. 22 Feb. 1996, pp. 46–50

    Google Scholar 

  40. L. T. Manzione, J. K. Gillham, and C. A. McPherson. “Rubber Modified Epoxies, Transitions and Morphology,” J. Appl. Polym. Sci., 26: p. 889, 1981

    Article  Google Scholar 

  41. P. Yalamanchili, R. Gannamani, R. Munamarty, P. McCluskey, and A. Christou. Optimum Processing Prevents PQFP Popcorning, Surface Mount Technology, pp. 39–42, May 1995

    Google Scholar 

  42. Intel Corporation. “Recommended Procedures for Handling of Moisture Sensitive Plastic Packages,” in Intel Corporation Packaging Handbook, Intel Corp., 1993

    Google Scholar 

  43. S. Altimari, S. Goldwater, P. Boysan, and P. Boysan. “Role of Design Factors for Improving Moisture Performance of Plastic Packages,” Proceedings of the 42nd Electronic Components and Technology Conference, pp. 945–950, 1992

    Google Scholar 

  44. L. T. Nguyen, K. L. Chen, and P. Lee. “Leadframe Designs for Minimum Molding-Induced Warpage,” Proceedings of the 44th Electronic Components and Technology Conference, 1993

    Google Scholar 

  45. F. Linker, B. Levit, and B. Levit. “Ensuring Lead Integrity,” Adv. Packaging, pp. 20–23, 1993

    Google Scholar 

  46. C. L. Alger, D. E. Pope, P. M. Rehm, and N. Subramaniam. “Solderability Requirements for Plastic Surface Mount Packages,” Proceedings of the 7th IEEE-CHMT, IEMTS, 1990

    Google Scholar 

  47. E. Pope. “Moisture Barrier Bag Characteristics for PSMC Protection,” Technical Proceedings, SEMICON-East, pp. 59–69, 1988

    Google Scholar 

  48. Texas Instruments. Texas Instruments Military Plastic Packaging. Preliminary Handbook, Texas Instruments, 1992

    Google Scholar 

  49. MIL-B-81705B. Military specification. Barrier Materials, Flexible, Electrostatic-free, Heat sealable, U. S. Department of Defense, Washington, DC, 1989

    Google Scholar 

  50. Hitachi. Surface Mount Package Users Manual Hitachi, 1991

    Google Scholar 

  51. S. S. Chiang and R. K. Shukla. “Failure Mechanism of Die Cracking Due to Imperfect Die-Attachment,” Proceedings of the IEEE Electronic Components and Technology Conference, pp. 195–202, 1984

    Google Scholar 

  52. D. Broek, Elementary Engineering Fracture Mechanics, 4th ed., Kluwer Academic, Boston, 1991

    Google Scholar 

  53. P. P. Merrett. “Plastic-Encapsulated Device Reliability,” in Plastics for Electronics, ed. Martin T. Goosey, Elsevier Applied Science Publication, New York, 1985

    Google Scholar 

  54. S. Okikawa, M. Sakimoto, M. Tanaka, T. Sato, T. Toya, and T. Toya. Stress Analysis of Passivation Film Crack for Plastic Molded LSI Caused by Thermal Stress, Proceedings International Symposium on Test and Failure Analysis pp. 275–280, 1983

    Google Scholar 

  55. H. Inayoshi, K. Nishi, S. Okikawa, and S. Okikawa. “Moisture-Induced Aluminum Corrosion and Stress on the Chip in Plastic-Encapsulated LSIs,” Proceedings of the 17th Annual International Reliability Physics Symposium, pp. 113–117, 1979

    Google Scholar 

  56. L. J. Gallace, H. J. Khajezadeh, and A. S. Rose. “Accelerated Reliability Evaluation of Trimetal Integrated Circuit Chips in Plastic Packages,” Proceedings of the 14th Annual International Reliability Physics Symposium, pp. 224–228, 1978

    Google Scholar 

  57. L. T. Nguyen, S. A. Gee, and W. F. Bogert. “Effects of Configuration on Plastic Packages,” J. Electron. Packaging, 113: pp. 397–404, 1991

    Article  Google Scholar 

  58. L. T. Nguyen. “Moisture Diffusion in Electronic Packages, II: Molded Configurations vs. Face Coatings,” 46th SPE ANTEC, pp. 459–461, 1988

    Google Scholar 

  59. L. T. Nguyen and F. J. Lim. “Wire Sweep during Molding of Integrated Circuits,” IEEE Electronic Components and Technology Conference, pp. 777–785, 1990

    Google Scholar 

  60. L. T. Nguyen, A. S. Danker, N. Santhiran, and C. R. Shervin. “Flow Modeling of Wire Sweep During Molding of Integrated Circuits,” ASME Winter Annual Meeting, pp. 27–38, 1992

    Google Scholar 

  61. L. T. Nguyen, R. L. Walberg, C. K. Chua, and A. S. Danker. “Voids in Integrated Circuits Plastic Packages from Molding,” ASME/JSME Conference on Electronic Packaging, pp. 751–762, 1992

    Google Scholar 

  62. L. T. Nguyen. “Reactive Flow Simulation in Transfer Molding of Integrated Circuits Packages,” IEEE Electronic Components and Technology Conference, 1993

    Google Scholar 

  63. S. A. Gee, L. T. Nguyen, and V. R. Akylas. “Wire Bonder Characterization Using a P-N Junction-Bond Pad Test Structure,” MEPPE FOCUS 91, pp. 156–170, 1991

    Google Scholar 

  64. V. H. Winchell. “An Evaluation of Silicon Damage Resulting from Ultrasonic Wire Bonding,” Proceeding of the 14th Annual International Reliability Physics Symposium, pp. 98–107, 1976

    Google Scholar 

  65. V. H. Winchell and H. M. Berg. Enhancing Ultrasonic Bond Development. IEEE Transactions on Components, Hybrids, and Manufacturing Technology CHMT-1, pp. 211–219, 1978

    Article  Google Scholar 

  66. H. Koyama, H. Shiozaki, I. Okumura, S. Mizugashira, H. Higuchi, and H. Higuchi. “A Bond Failure Wire Crater in a Surface Mount Device,” Proceedings of the 26th Annual International Reliability Physics Symposium, pp. 59–63, 1988

    Google Scholar 

  67. V. S. Kale. “Control of Semiconductor Failures Caused by Cratering of Bond Pads,” Proceedings of the International Microelectronics Symposium, pp. 311–318, 1979

    Google Scholar 

  68. T. Koch, W. Richling, J. Whitlock, and J. Whitlock. “A Bond Failure Mechanism,” Proceedings of the 24th Annual International Reliability Physics Symposium, pp. 55–60, 1986

    Google Scholar 

  69. T. B. Ching and W. H. Schroen. Bond Pad Structure Reliability. Proceedings of the 26th Annual International Reliability Physics Symposium, pp. 64–70, 1988

    Google Scholar 

  70. C. W. Horsting. Purple Plague and Gold Purity. Proceedings of the 10th Annual International Reliability Physics Symposium, pp. 155–158, 1972

    Google Scholar 

  71. G. G. Harman. Reliability and Yield Problems of Wire Bonding in Microelectronics, ISHM, 1989

    Google Scholar 

  72. D. O. Harris, R. A. Sire, C. F. Popelar, M. F. Kanninen, D. L. Davidson, L. B. Duncan, Kallis, and J. Hiatt. “Microprobing,” Proceedings of the 18th Annual International Reliability Physics Symposium, pp. 116–120, 1980

    Google Scholar 

  73. N. C. McDonald and P. W. Palmberg. Application of Auger Electron Spectroscopy for Semiconductor Technology, p. 42, IEDM, 1971

    Google Scholar 

  74. N. C. McDonald and G. E. Riach. “Thin Film Analysis for Process Evaluation,” Electron. Packaging Production, pp. 50–56, 1993

    Google Scholar 

  75. H. K. James. “Resolution of the Gold Wire Grain Growth Failure Mechanism in Plastic-Encapsulated Microelectronic Devices,” IEEE Trans. Components Hybrids Manuf Technol., CHMT-3: pp. 370–374, 1980

    Article  Google Scholar 

  76. J. L. Newsome, R. G. Oswald, and W. R. Rodrigues de Miranda. “Metallurgical Aspects of Aluminum Wire Bonds to Gold Metallization,” 14th Annual Proceedings of the IEEE Electronics Components and Technology Conference, pp. 63–74, 1976

    Google Scholar 

  77. P. M. Hall, N. T. Panousis, and P. R. Manzel. “Strength of Gold Plated Copper Leads on Thin Film Circuits Under Accelerated Aging,” IEEE Trans. Parts, Hybrids, Packaging, PHP-11(3): pp. 202–205, 1975

    Article  Google Scholar 

  78. S. S. Kim. “Improving Plastic Package Reliability Through Enhanced Mold Compound Adhesion,” IEEE International Reliability Physics Symposium Tutorial, Topic 2, pp. 2d.l–2d.17, 1992

    Google Scholar 

  79. L. T. Nguyen. “Surface Sensors for Moisture and Stress Studies,” in New Characterization Techniques for Thin Polymer Films, ed. H-M. Tong and L. T. Nguyen, Wiley, New York, 1990

    Google Scholar 

  80. L. T. Nguyen. “Reliability of Postmolded Integrated Circuits Packages,” SPERETEC, pp. 182–204, 1991

    Google Scholar 

  81. O. Yoshioka, N. Okabe, S. Nagayama, R. Yamaguchi, and R. Yamaguchi. “Improvement of Moisture Resistance in Plastic Encapsulants MOS-Integrated Circuits by Surface Finishing Copper Leadframe,” Proceedings of the 39th IEEE Electronic Components and Technology Conference, pp. 464–471, 1989

    Google Scholar 

  82. M. Kitano, A. Nishimura, and A. Nishimura. “A Study of Package Cracking During the Reflow Soldering Process (1st & 2nd Reports, Strength Evaluation of the Plastic by Using Stress Singularity Theory),” Trans. Japan Soc. Mech. Eng., 57 (90): pp. 120–127, 1991

    Google Scholar 

  83. P. C. Paris, M. P. Gomez, and W. E. Anderson. “A Rational Analytical Theory of Fatigue,” Trend Eng. 13: pp. 9–14. 1961

    Google Scholar 

  84. A. Nishimura, A. Tatemichi, H. Miura, and H. Miura. “Life Estimation for Integrated Circuits Plastic Packages Under Temperature Cycling Based on Fracture Mechanics,” IEEE Trans. Components Hybrids Technol, CHMT-12(4): pp. 637–642, 1987

    Article  Google Scholar 

  85. S. Ito, A. Kitayama, H. Tabata, and H. Tabata. “Development of Epoxy Encapsulants for Surface Mounted Devices,” Nitto Technol. Rep. pp. 78–82, 1987

    Google Scholar 

  86. T. C. May and M. H. Woods. A New Physical Mechanism for Soft Errors in Dynamic Memories. Proceedings of the 16th Annual International Reliability Physics Symposium, pp. 33–40, 1978

    Google Scholar 

  87. D. Frear, H. Norgan, S. Burchett, and S. Burchett. The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York, 1994

    Google Scholar 

  88. R. B. Ghate. Industrial Perspective on Reliability of VLSI Devices, Texas Instruments, 1992

    Google Scholar 

  89. R. W. Vahle, and R. J. Hanna. Proceedings of the International Congress on Transportation Electronics, Society Automotive Engineering (October 1990) 225

    Google Scholar 

  90. C. Bloomer, R. L. Franz, M. J. Johnson, S. Kent, B. Mepham, S. Smith, R. M. Sonnicksen, and L. S. Walker. “Failure Mechanisms in Through-Hole Packages,” in Electronic Materials Handbook, 1, Packaging, ed. by M. L. Minges, pp. 969–981, ASM International, Materials Park, OH 1989

    Google Scholar 

  91. M. G. Pecht and V. Ramappan. Are Components still the Major Problem: A Review of Electronic System and Device Field Failure Returns. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 6, pp. 1160–1164, Dec. 1992

    Article  Google Scholar 

  92. C. H. Taylor. “Just How Reliable Are Plastic-Encapsulated Semiconductors for Military Applications and How Can the Maximum Reliability Be Obtained?” Microelectron. Reliability. 15: pp. 131–134, 1976

    Article  Google Scholar 

  93. C. H. Taylor and B. C. Roberts. Evaluation of a U. K. Specification for the Procurement of Plastic-Encapsulated Semiconductor Devices for Military Use. Microelectronics and Reliability, 18 pp. 367–377, 1978

    Article  Google Scholar 

  94. P. V. Robock, and L. T. Nguyen. “Plastic Packaging,” in Microelectronics Packaging Handbook, ed. R. R. Tummala and E. J. Rymaszewski, Van Nostrand Reinhold, New York, 1989

    Google Scholar 

  95. L. T. Nguyen and J. A. Jackson. “Identifying Guidelines for Military Standardization of Plastic-Encapsulated Integrated Circuits Packages,” Solid-State Technol., pp. 39–45, 1993

    Google Scholar 

  96. R. Iscoff. “Thin Outline Packages: Handle With Care!” Semicond. Int. pp. 78–82, 1992

    Google Scholar 

  97. P. Hoffman, D. Liang, D. Mahulikar, and D. Mahulikar. “Development of a High Performance TQFP Package,” pp. 57–62, 1994

    Google Scholar 

  98. R. Iscoff. “Amkor Develops Competitor to Multilayer Ceramic, MQUAD Packages,” Semicond. Inter., p. 34, 1992

    Google Scholar 

  99. R. Iscoff. “Micro SMT Package Avoids Traditional Bonding Methods,” Semicond. Int. p. 40, 1992

    Google Scholar 

  100. W. E. Jahsman. “Lead Frame and Wire Bond Length Limitations to Bond Densification,” J. Electron. Packaging, 111: pp. 289–294, 1989

    Article  Google Scholar 

  101. K. Otsuka, Y. Takeo, H. Tachi, H. Ishida, T. Yamada, and T. Yamada. “High Reliability Mechanism of New Silicone Gel Sealing in Accelerated Environment Text,” Proc. I.E.P.S., pp. 720–726, 1986

    Google Scholar 

Additional Readings

  • C. Bloomer, R. L. Franz, M. J. Johnson, S. Kent, B. Mepham, S. Smith, R. M. Sonnicksen, and L. S. Walker. “Failure Mechanisms in Through-Hole Packages,” in Electronic Materials Handbook, 1, Packaging, ed. by M. L. Minges, pp. 969–981, ASM International, Materials Park, OH 1989

    Google Scholar 

  • S. Han and K. K. Wang. A Study of the Effects of Fillers on Wire Sweep Related to Semiconductor Chip Encapsulation, ASME Winter Annual Meeting pp. 123–130, 1993

    Google Scholar 

  • S. Mizugashira, H. Higuchi, and H. Higuchi. “Improvement of Moisture Resistance by Ion-Exchange Process,” IRPS IEEE, pp. 212–215, 1987

    Google Scholar 

  • Nitto Denko Corporation, personal communication, 1993

    Google Scholar 

  • G. F. Watson. “Interconnections and Packaging,” IEEE Spectrum, pp. 69–71, 1992

    Google Scholar 

  • SIA 1993

    Google Scholar 

  • G. Wolfe. “Electronic Packaging Issues in the 1990s,” Electron. Packaging Production, pp. 76–80, 1990

    Google Scholar 

Bibliography

  • ASTM Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, 1993.

    Google Scholar 

  • L. W. Condra, G. A. Kromholtz, M. G. Pecht, and E. B. Hakim. “Using Plastic-Encapsulated Microcircuits in High Reliability Applications,” Proceedings Annual Reliability and Maintainability Symposium, pp. 481–488, 1994

    Google Scholar 

  • L. W. Condra, S. O’Rear, T. Freedman, L. Flancia, M. Pecht, and M. Pecht. “Comparison of Plastic and Hermetic Microcircuits under Temperature Cycling and Temperature Humidity Bias,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, pp. 640–650, Oct. 1992

    Article  Google Scholar 

  • L. W. Condra, G. Wenzel, and G. Wenzel. “Reliability Evaluation of Simple Logic Microcircuits in Surface Mount Plastic Packages,” ASME Winter Annual Meeting, New Orleans, Nov. 1993

    Google Scholar 

  • A. Gallo, and R. Munamarty. “Popcorning: A Failure Mechanism in Plastic Encapsulated Microcircuits,” IEEE Trans, on Reliability, Sept. 1995

    Google Scholar 

  • R. Gannamani and R. Munamarty. “Techniques to Qualify PEMs against Popcorning,” Electronic Materials and Packaging, pp. 24–26, Nov. 1995

    Google Scholar 

  • R. Gannamani, and M. Pecht. “An Experimental Study on Popcorning in PEMs,” IEEE Trans. on Components, Packaging, and Manufacturing Technology—Part A, vol. 19, no. 2, pp. 194–201, June 1996

    Article  Google Scholar 

  • N. Kelkar, A. Fowler, M. Pecht, and M. Pecht. “Phenomenological Reliability Modeling of Plastic Encapsulated Microcircuits,” International Journal of Microcircuits and Electronic Packaging, vol. 19, no. 1, March 1996

    Google Scholar 

  • R. Munamarty, P. McCluskey, M. Li, P. Yalamanchili, R. Gannamani, and R. Gannamani. “Delamination and Cracking in PBGAs during IR Reflow Soldering,” BGA Conference, Berlin Germany, 1995

    Google Scholar 

  • L. T. Nguyen. “Wirebond Behavior During Molding of Integrated Circuits,” Polm. Eng. Sci. 28(4): pp. 926–943, 1988

    Article  Google Scholar 

  • L. T. Nguyen and C. A. Kovac. “Moisture Diffusion in Electronic Packages. I. Transport Within Face Coatings,” SAMPE Electronics Materials and Processes Conference, pp. 574–589, 1987

    Google Scholar 

  • L. T. Nguyen. “On Lead Finger Designs in Plastic Packages for Enhanced Pull Strength,” Int. J. Microcircuits Electron. Packaging, 15 (1): pp. 11–33, 1991

    Google Scholar 

  • L. T. Nguyen, A. Danker, N. Santhiran, and C. R. Shervin. “Flow Modeling of Wire Sweep During Molding of Integrated Circuits,” ASME Winter Annual Meeting, pp. 27–38, 1992

    Google Scholar 

  • L. T. Nguyen, R. H. Y. Lo, and J. G. Belani. “Molding Compound Trends in a Denser Packaging World, I: Technology Evolution,” IEEE International Electronic Manufacturing Technology Symposium, 1993

    Google Scholar 

  • M. G. Pecht. “A Model for Moisture Induced Corrosion Failures in Microelectronic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 2, pp. 383–389, June 1990

    Article  Google Scholar 

  • M. G. Pecht, and V. Ramappan. “Are Components Still the Major Problem: A Review of Electronic System and Device Field Failure Returns,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 6, pp. 1160–1164, Dec. 1992

    Article  Google Scholar 

  • C.G.M. Van Kessel, S. A. Gee, and J. R. Dale. “Evaluating Fracture in Integrated Circuits With Acoustic Emission,” Acoustic Emission Testing, 5, 2nd ed., vol. 5, pp. 370–388, ed. G. Harman, American Society for Non-Destructive Testing, 1987

    Google Scholar 

  • P. Yalamanchili, P. Gannamani, R. Munamarty, P. McCluskey, and A. Christou. “Optimum Processing Prevents PQFP Popcorning,” Surface Mount Technology, pp. 39–42, May 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pecht, M.G., Nguyen, L.T. (1997). Plastic Packaging. In: Tummala, R.R., Rymaszewski, E.J., Klopfenstein, A.G. (eds) Microelectronics Packaging Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6037-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6037-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7767-2

  • Online ISBN: 978-1-4615-6037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics