Skip to main content

Tem Studies of Some Structurally Flexible Solids and Their Associated Phase Transformations

  • Chapter
In-Situ Microscopy in Materials Research

Abstract

There exist many crystalline “line” phases in a wide variety of chemical systems characterized by well-defined and essentially invariant stoichiometries and atomic positions in a conventional three dimensional unit cell, and whose structures apparently represent a unique dominant minimum in local free energy space. Equally, however, there also exists a wide variety of solid state systems whose chemistry and/or crystallography is inherently rather more flexible [1–5]. Such compositionally and/or displacively flexible systems are characterized by an intrinsic ability to exist over a broad range of temperature, pressure, composition etc. without having to undergo major reconstructive structural phase transformation. Examples are provided by wide range non-stoichiometric (1−x)MO2.xRO1.5 (M=Ce,Zr; R=lanthanide) anion-deficient fluorite type solid solutions [6–8] or the topologically equivalent family of SiO2-tridymite [9–11] polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roth RS. Thermal stability of long range order in oxides. Prog. Solid State Chem. 13, 159–192, 1981.

    Google Scholar 

  2. Anderson JS. Non-stoichiometric compounds: A critique of current structural views. Proc. Indian Acad. Sci. (Chem.Sci.) 93, 861–904, 1984.

    CAS  Google Scholar 

  3. Hazen RM and Finger LW. Comparative crystal chemistry: Temperature, pressure, composition and the variation of crystal structure. Wiley, Chichester, 1982.

    Google Scholar 

  4. Withers RL, Welberry TR and Schmid S. A TEM and X-ray diffraction study of some imperfectly ordered, “infinitely adaptive” crystal structures and the principles underlying their structural flexibility. Materials Science Forum 150–151, 85–96, 1994.

    Article  Google Scholar 

  5. Giddy AP, Dove MT, Pawley, GS and Heine V. The determination of rigid unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Cryst. A 49, 697–703, 1993.

    Article  Google Scholar 

  6. Bevan, DJM, Barker,WW, Parks, TC and Martin, RL. “Mixed oxides of the type MO2 (fluorite) — M2O3. Part 2, Non-stoichiometry in ternary rare earth oxide systems”. In Rare Earth Research III, L.Eyring, ed. New York: Gordon and Breach, 1965, 44–468.

    Google Scholar 

  7. Etsell TH and Flengas SN. The elctrical properties of solid oxide electrolytes. Chem. Rev. 70, 339–376, 1970.

    Article  CAS  Google Scholar 

  8. Rouanet A. Contribution a l’etude des systemes zircone-oxydes des lanthanides au voisinages de la fusion. Rev. Int. Hautes Temper. Refract. 8, 161–180, 1971.

    CAS  Google Scholar 

  9. Wennemer M and Thompson AB. Tridymite polymorphs and polytypes. Schweiz. Mineral. Petrogr. Mitt. 64, 335–353, 1984.

    CAS  Google Scholar 

  10. Smelik EA and Reeber RR. A study of the thermal behaviour of terrestrial tridymite by continuous X-ray diffraction. Phys. Chem. Minerals 17, 197–206, 1990.

    Article  CAS  Google Scholar 

  11. Graetsch H and Flörke OW. X-ray powder diffraction patterns and phase relations of tridymite modifications. Z. Kristallogr. 195, 31–48, 1991.

    Article  CAS  Google Scholar 

  12. Megaw HD. Crystal structures: A working approach. Saunders Co., Philadelphia, 1973.

    Google Scholar 

  13. Bärnighausen H. Group-subgroup relations between space groups: A useful tool in crystal chemistry. Communications in Mathematical Chem. 9, 139–175, 1980.

    Google Scholar 

  14. Lincoln FJ, Sellar JR and Hyde BG. A new examination of the thermodynamic properties of the oxygen-deficient fluorite type phase α-PrO2.δ. Journal of Solid State Chem. 74, 268–276, 1988.

    Article  CAS  Google Scholar 

  15. Palmer DC and Finger LW. Pressure-induced phase transition in cristobalite: An X-ray powder diffraction study to 4.4 GPa. Amer. Miner. 79, 1–8, 1994.

    CAS  Google Scholar 

  16. Hammonds KD, Dove MT, Giddy AP, Heine V and Winkler B. Rigid-unit phonon modes and structural phase transitions in framework silicates. Amer. Miner. 81, 1057–1079, 1996.

    CAS  Google Scholar 

  17. Glazer AM. The classification of tilted octahedra in perovskites. Acta Cryst.B 28, 3384–3392, 1972.

    Article  CAS  Google Scholar 

  18. Hemley RJ, Prewitt CT and Kingma KJ. “High pressure behaviour of silica”. In Reviews of Mineralogy 29; Silica: Physical behaviour, Geochemistry and Materials Applications, P.J. Heaney, C.T. Prewitt and G.V. Gibbs, eds. Mineralogical Society of America, 41–81, 1994.

    Google Scholar 

  19. Van Tendeloo G, Van landuyt J and Amelinckx S. The α-β phase transition in quartz and A1PO4 as studied by electron microscopy and diffraction. Phys. Stat. Sol. 33, 723–735, 1976.

    Article  Google Scholar 

  20. Malov YV and Sonyushkin VE. Direct electron-microscopic investigation of the α-β transition process in quartz. Soviet Phys. Cryst. 20, 644–645,1976.

    Google Scholar 

  21. Bachheimer JP. An anomaly in the β-phase near the α-β transition of quartz. J.Physique- Lett. 41, L559–561, 1980.

    Article  Google Scholar 

  22. Walker MB and Gooding RJ. Properties of Dauphiné-twin domain walls in quartz and berlinite. Phys. Rev. B 32, 7408–7411,1985.

    Article  CAS  Google Scholar 

  23. Dolino G. The α-inc-β transitions of quartz: A century of research on displacive phase transitions. Phase Transitions 21, 59–72, 1990.

    Article  CAS  Google Scholar 

  24. Snoeck E, Roucau C and Saint-Grégoire P. Electron microscopy study of the modulated phases in berlinite AlPO4 and quartz. J.Physique 47, 2041–2053, 1986.

    Article  CAS  Google Scholar 

  25. Yamamoto N, Tsuda K and Yagi K. High voltage electron microscope study of incommensurate phase in quartz. J.Phys.Soc.Jpn. 57, 1352–1364, 1988.

    Article  CAS  Google Scholar 

  26. Christie JM, Lally JS, Heuer AH, Fisher RM, Griggs DT and Radcliffe SV. Comparative electron petrography of Apollo 11, Apollo 12 and terrestrial rocks. Proceedings of the Second lunar Science Conference 1, 69–89, MIT Press, 1971.

    Google Scholar 

  27. Carpenter M and Wennemer M. Characterization of synthetic tridymites by transmission electron microscopy. Amer. Miner. 70, 517–528, 1985.

    CAS  Google Scholar 

  28. Gai-Boyes P, Saltzberg MA and Vega A. Structures and stabilization mechanisms in chemically stabilized ceramics. Journal of Solid State Chem. 106, 35–47, 1993.

    Article  CAS  Google Scholar 

  29. Withers RL, Thompson JG, Xiao Y and Kirkpatrick RJ. An electron diffraction study of the polymorphs of SiO2-tridymite. Phys. Chem. Minerals 21, 421–433, 1994.

    Article  CAS  Google Scholar 

  30. Schmahl WW, Swainson IP, Dove MT and Graeme-Barber A. Landau free energy and order parameter behaviour of the α/β phase transition in cristobalite. Z.Kristallogr. 201, 125–145, 1992.

    Article  CAS  Google Scholar 

  31. Wyckoff RWG. The crystal structure of the high temperature form of cristobalite (SiO2). Am. J. Sci. 9, 448–459, 1925.

    Article  CAS  Google Scholar 

  32. Barth TFW. The cristobalite structures: I. High-cristobalite. Am. J. Sci. 23, 350–356, 1932.

    Article  CAS  Google Scholar 

  33. Nieuwenkamp W von. Über die Struktur von hoch-Cristobalit. Z. Kristallogr. 96, 454–458, 1935.

    Google Scholar 

  34. Peacor DR. High temperature single-crystal study of the cristobalite inversion. Z. Kristallogr. 138, 274–298, 1973.

    Article  CAS  Google Scholar 

  35. Wright AF and Leadbetter AJ. The structures of the β-cristobalite phases of SiO2 and A1PO4. Phil. Mag. 31,1391–1401,1975.

    Article  CAS  Google Scholar 

  36. Welberry TR, Hua GL and Withers RL. An optical transform and Monte carlo study of the disorder in β-cristobalite SiO2. J. Appl. Cryst. 22, 87–95, 1989.

    Article  CAS  Google Scholar 

  37. Hatch DM and Ghose S. The α-β phase transition in cristobalite, SiO2. Phys. Chem. Minerals 17, 554–562, 1991.

    Article  CAS  Google Scholar 

  38. Liu F, Garofalini SH, King-Smith RD and Vanderbilt D. First-Principles studies on structural properties of β-cristobalite. Phys. Rev. Letts. 70, 2750–2753, 1993.

    Article  CAS  Google Scholar 

  39. Swainson IP and Dove MT. Comment on “First-Principles studies on structural properties of cristobalite”. Phys. Rev. Letts. 71, 3610, 1993.

    Article  CAS  Google Scholar 

  40. O’Keeffe M and Hyde BG. Cristobalites and topologically-related structures. Acta Cryst. B 32, 2923–2936, 1976.

    Article  Google Scholar 

  41. Hua GL, Welberry TR, Withers RL and Thompson JG. An electron diffraction and lattice dynamical study of the diffuse scattering in β-cristobalite, SiO2. J. Appl. Cryst. 21, 458–465, 1988.

    Article  CAS  Google Scholar 

  42. Withers RL, Thompson JG and Welberry TR. Phys. Chem. Minerals 16, 517–523, 1989.

    Article  CAS  Google Scholar 

  43. Phillips BL, Thompson JG, Xiao Y and Kirkpatrick RJ. Constraints on the structure and dynamics of the β-cristobalite polymorphs of SiO2 and A1PO4 from 31P, 27Al and 29Si NMR spectroscopy to 770K. Phys. Chem. Minerals 20, 341–352, 1993.

    Article  CAS  Google Scholar 

  44. Dove MT, Heine V and Hammonds KD. Rigid unit modes in framework silicates. Miner. Mag. 59, 629–639, 1995.

    Article  CAS  Google Scholar 

  45. Hammonds KD, Dove MT, Giddy AP, Heine V and Winkler B. Rigid-unit modes and structural phase transitions in framework silicates. Amer. Miner. 81, 1057–1079, 1996.

    CAS  Google Scholar 

  46. Withers RL, Lobo C, Thompson JG and Schmid S. A modulation wave approach to the structural characterization of three new cristobalite-related sodium magnesiosilicates. Acta Cryst. B, in press.

    Google Scholar 

  47. Palmer DC. “Stuffed derivatives of the silica polymorphs”. In Reviews of Mineralogy 29;Silica: Physical behaviour, Geochemistry and Materials Applications, P.J.Heaney, C.T.Prewitt and G.V.Gibbs, eds. Mineralogical Society of America, 83–122, 1994.

    Google Scholar 

  48. Dollase WA. Reinvestigation of the structure of low cristobalite. Z. Kristallogr. 121, 369–377, 1965.

    Article  CAS  Google Scholar 

  49. Thompson JG, Withers RL, Whittaker AK, Traill RM and Fitz Gerald JD. A reinvestigation of low carnegieite by XRD, NMR and TEM. Journal of Solid State Chem. 104, 59–73, 1993.

    Article  CAS  Google Scholar 

  50. Withers RL and Thompson JG, A modulation wave approach to the structural parameterization and Rietveld refinement of low carnegieite. Acta Cryst. B 49, 614–626, 1993.

    Article  Google Scholar 

  51. Bertaut EF and Blum P. Structure of a new variety of sodium ferrite NaFeO2. C. R. Acad. Sci. 239, 429–431, 1954.

    CAS  Google Scholar 

  52. Joubert-Bettan CA, Lachenal R, Bertaut EF and Parthé E. The crystal structures of Na2ZnSiO4, Na2ZnGeO4 and Na2MgGeO4. Journal of Solid State Chem. 1, 1–5, 1969.

    Article  CAS  Google Scholar 

  53. Vielhaber E and Hoppe R. Oxogallate der Alkalimetalle. Z. Anorg. Allg. Chem. 369, 14–32, 1969.

    Article  CAS  Google Scholar 

  54. Nord GL. Imaging transformation-induced microstructures. Rev. Min. 27, 455–508, 1992.

    CAS  Google Scholar 

  55. Heaney P. “Structures and Chemistry of the Low pressure silica polymorphs”. In Reviews of Mineralogy 29; Silica: Physical behaviour, Geochemistry and Materials Applications, P.J. Heaney, C.T. Prewitt and G.V. Gibbs, eds. Mineralogical Society of America, 1–40, 1994.

    Google Scholar 

  56. Boher P, Garnier P, Gavarri JR and Hewat AW. Monoxyde quadratique PbOα(I): Description de la transition structurale ferroélastique. Journal of Solid State Chem. 57, 343–350, 1985.

    Article  CAS  Google Scholar 

  57. Moreau J, Kiat JM, Garnier P and Calvarin G. Incommensurate phase in lead monoxide α- PbO below 208K. Phys. Rev. B 39, 10296–10299, 1989.

    Article  CAS  Google Scholar 

  58. Hédoux A, Grebille D and Garnier P. Structural resolution of the incommensurate phase of α-PbO from x-ray and neutron-powder-diffraction data. Phys. Rev. B 40, 10653–10656, 1989.

    Article  Google Scholar 

  59. Le Bellac D, Kiat JM, Garnier P, Moudden H, Sciau P, Buffat PA and André G. Mechanism of the incommensurate phase in lead oxide α-PbO. Phys. Rev. B 52, 13184–13194, 1995.

    Article  Google Scholar 

  60. Withers RL, Schmid S and Thompson JG. “The tweed microstructure of α-PbO and its relationship to the low temperature improper ferroelastic phase transition”. In Defects and Processes in the Solid State: Geoscience Applications: The McLaren Volume. J.N.Boland and J.D.Fitz Gerald, eds. Elsevier, Amsterdam, 305–316, 1993.

    Google Scholar 

  61. Le Bellac D. Étude du méchanisme de la transition structurale incommensurable de PbO-α. Comparaisons avec le composé isotype SnO et la solution solide Pb 1−x (TiO) x O. Thése de l’université Paris XI Orsay, 1993.

    Google Scholar 

  62. McConnell JDC. Electron optical study of effects associated with partial inversion in a silicate phase. Phil. Mag. 11, 1289–1301, 1965.

    Article  CAS  Google Scholar 

  63. McLaren AC and Fitz Gerald JD. CBED and ALCHEMI investigations of local symmetry and Al,Si ordering in K-feldspars. Phys. Chem. Minerals 14, 281–292, 1987.

    Article  CAS  Google Scholar 

  64. Welberry TR. Diffuse X-ray scattering and models of disorder. Reports of Progress in Physics 48, 1543–1593, 1985.

    Article  CAS  Google Scholar 

  65. Withers RL and Schmid S. A TEM and group theoretical study of α-PbO and its low temperature improper ferroelastic phase transition. Journal of Solid State Chem. 113, 272–280, 1994.

    Article  CAS  Google Scholar 

  66. Hoskins BF and Martin RL. The structures of higher rare earth oxides: role of the coordination defect. Aust. J. Chem. 48, 709–739, 1995.

    Article  CAS  Google Scholar 

  67. Welberry TR, Withers RL and Mayo SC. A modulation wave approach to understanding the disordered structure of cubic stabilized zirconias (CSZs). Journal of Solid State Chem. 115, 43–54, 1995.

    Article  CAS  Google Scholar 

  68. Dai ZR, Wang ZL and Liu WX. Local ordering of oxygen vacancies in cubic zirconia stabilized with yttria and magnesia II. Dtermination of local ordering parameters of oxygen vacancies. Phil. Mag. A 73, 1685–1698, 1996.

    Article  CAS  Google Scholar 

  69. Miida R and Tanaka M. Electron diffraction and microscope studies of zirconium oxides stabilized by several metal oxides. J. Appl. Cryst. 27, 67–73, 1994.

    Article  CAS  Google Scholar 

  70. Neder RB, Frey F and Schultz H. Defect structure of Zirconia (Zr0.85Ca0.15O1.85) at 290 and 1550 K. Acta Cryst. A 46, 799–809, 1990.

    Article  Google Scholar 

  71. Suzuki S, Tanaka M and Ishigame M. Structural studies on the ZrO2-Y2O3 system by electron diffraction and electron microscopy I. Jap. Jnl. of Appl. Phys. 24, 401–410, 1985.

    Article  CAS  Google Scholar 

  72. Withers RL, Thompson JG and Barlow PJ. An electron, and X-ray powder, diffraction study of cubic, fluorite-related phases in various ZrO2-Ln2O3 systems. Journal of Solid State Chem. 94, 89–105, 1991.

    Article  CAS  Google Scholar 

  73. Bevan DJM and Summerville E. “Mixed rare earth oxides”. In Handbook on the Physics and Chemistry of the Rare Earths, K.A. Gschneider and L. Eyring, eds. North-Holland, Amsterdam, 3, 401–524, 1979.

    Google Scholar 

  74. Withers RL, Thompson JG, Gabbitas N, Wallenberg LR and Welberry TR. Microdomains, solid solutions and the “defect fluorite” to C type sesquioxide transition in CeO2YO1.5 and ZrO2RO1.5 systems. Journal of Solid State Chem. 120, 290–298, 1995.

    Article  CAS  Google Scholar 

  75. Eaglesham DJ, Withers RL and Bird DM. Charge-Density-Wave transitions in lT-VSe2. J. Phys. C 19, 359–367, 1986.

    Article  CAS  Google Scholar 

  76. Withers RL and Wilson JA. An examination of the formation and characteristics of charge-density-waves in inorganic materials with special reference to the two- and one-dimensional transition metal dichalcogenides. J. Phys. C 19, 4809–4845, 1986.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Withers, R.L., Thompson, J.G. (1997). Tem Studies of Some Structurally Flexible Solids and Their Associated Phase Transformations. In: Gai, P.L. (eds) In-Situ Microscopy in Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6215-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6215-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9989-6

  • Online ISBN: 978-1-4615-6215-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics