Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 189))

Abstract

Angiogenic cytokines constitute a potentially novel form of therapy for patients with cardiovascular disease. The feasibility of using recombinant formulations of angiogenic growth factors to expedite and/or augment collateral artery development in animal models of myocardial and hindlimb ischemia — “therapeutic angiogenesis” — has now been well established. These studies have suggested that two angiogenic growth factors in particular, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), are sufficiently potent to merit further investigation. More recently, experiments performed in our laboratory have indicated that in the case of VEGF, a secreted protein, similar results may be achieved by percutaneous arterial gene transfer. Further laboratory and clinical studies may yield promising insights into the fundamental basis for native as well as therapeutic angiogenesis, and at the same time more explicitly define the manner in which therapeutic angiogenesis may be successfully incorporated into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  2. Shing Y, Folkman J, Sullivan J, Butterfield R, Murray J, Klagsbrun M: Heparin-afinity purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223:1296–1299

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J, Shing Y: Angiogenesis J Biol Chem 1992; 267:10931–10934

    PubMed  CAS  Google Scholar 

  4. Hockel M, Schlenger K, Doctrow S, Kissel T, Vaupel P: Therapeutic angiogenesis. Arch Surg 1993; 128:423–429

    Article  PubMed  CAS  Google Scholar 

  5. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P: Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Sur 1992; 16:181–191

    Article  CAS  Google Scholar 

  6. Pu LQ, Sniderman AD, Brassard R, et al.: Enhanced revascularization of the ischémic limb by means of angiogenic therapy. Circulation 1993; 88:208–215

    Article  PubMed  CAS  Google Scholar 

  7. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al.: Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992; 257:1401–1403

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N, Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161:851–855

    Article  PubMed  CAS  Google Scholar 

  9. Keck PJ, Hauser SD, Krivi G, et al.: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246:1309–1342

    Article  PubMed  CAS  Google Scholar 

  10. Connolly DR, Olander JV, Heuvelman D, et al.: Human vascular permeability factor: isolation from U937 cells. J Biol Chem 1989; 264:20017–20024

    PubMed  CAS  Google Scholar 

  11. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  12. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT: The/mi-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255:989–991

    Article  PubMed  Google Scholar 

  13. Millauer B, Wizigmann-Voos S, Schnurch H, et al.: High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72:835–846

    Article  PubMed  CAS  Google Scholar 

  14. Terman BI, Dougher-Vermozen M, Carrion ME, et al.: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor. Biochem Biophys Res Commun 1992; 187:1579–1586

    Article  PubMed  CAS  Google Scholar 

  15. Klagsbrun M, D’Amore PA: Regulators of angiogenesis. Annu Rev Physiol 1991; 53:217–239

    Article  PubMed  CAS  Google Scholar 

  16. Reidy MA, Clowes AW, Schwartz SM: Endothelial regeneration V. inhibition of endothelial regrowth in arteries of rat and rabbit. Lab Invest 1983; 49:569–575

    PubMed  CAS  Google Scholar 

  17. Conn G, Soderman D, Schaeffer M-T, Wile M, Hatcher VB, Thomas KA: Purification of glycoprotein vascular endothelial cell mitogen from a rat glioma cell line. Proc Natl Acad Sci USA 1990; 87:1323–1327

    Article  PubMed  CAS  Google Scholar 

  18. Shen H, Clauss M, Ryan J, et al.: Characterization of vascular permeability factor / vascular endothelial growth factor receptors on mononuclear phagocytes. Blood 1993; 81:2767–2773

    PubMed  CAS  Google Scholar 

  19. Clauss M, Gerlach M, Gerlach H, et al.: Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990; 172:1535–1545

    Article  PubMed  CAS  Google Scholar 

  20. Levy AP, Tamargo R, Brem H, Nathans D: An endothelial cell growth factor from the mouse neuroblastoma cell line NB41. Growth Factors 1989; 2:9–19

    Article  PubMed  CAS  Google Scholar 

  21. Connolly DT, Hewelman DM, Nelson R, et al.: Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989; 84:1470–1478

    Article  PubMed  CAS  Google Scholar 

  22. Takeshita S, Zheng LP, Brogi E, et al.: Therapeutic angiogenesis: A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischémic hind limb model. J Clin Invest 1994; 93:662–670

    Article  PubMed  CAS  Google Scholar 

  23. Takeshita S, Pu LQ, Stein LA, et al.: Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 1994; 90[Part 2]:II–228–II–234

    Google Scholar 

  24. Bauters C, Asahara T, Zheng LP, et al.: Site-specific therapeutic angiogenesis following systemic administration of vascular endothelial growth factor. J Vasc Surg 1995; 21:314–325

    Article  PubMed  CAS  Google Scholar 

  25. Bauters C, Asahara T, Zheng LP, et al.: Physiologic assessment of augmented vascularity induced by VEGF in rabbit ischemie hindlimb. Am J Physiol 1994; 36:H1263–H1271

    Google Scholar 

  26. Sellke FW, Quillen JE, Brooks LA, Harrison DG: Endothelial modulation of the coronary vasculature in vessels perfused via mature collaterals. Circulation 1990; 81:1938–1947

    Article  PubMed  CAS  Google Scholar 

  27. Sellke FW, Wang SY, Friedman M, et al.: Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation. Am J Physiol 1994;267(2):H1303–1311.

    PubMed  CAS  Google Scholar 

  28. Bauters C, Asahara T, Zheng LP, et al.: Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischémie hindlimb following administration of vascular endothelial growth factor. Circulation 1995; 91:2801–2809

    Google Scholar 

  29. Losordo DW, Pickering JG, Takeshita S, et al: Use of the rabbit ear artery to serially assess foreign protein secretion after site-specific arterial gene transfer in vivo: Evidence that anatomic identification of successful gene transfer may underestimate the potential magnitude of transgene expression. Circulation 1994; 89:785–792

    Article  PubMed  CAS  Google Scholar 

  30. Riessen R, Rahimizadeh H, Blessing E, Takeshita S, Barry JJ, Isner JM: Arterial gene transfer using pure DNA applied directly to a hydrogel-coated angioplasty balloon. Hum Gene Ther 1993; 4:749–758

    Article  PubMed  CAS  Google Scholar 

  31. Takeshita S, Weir L, Zheng LP, et al.: Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. Proc Natl Acad Sci USA (In Press)

    Google Scholar 

  32. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW: The vascular endothelial growth factor family of polypeptides. J Cell Biochem 1991; 47:211–218

    Article  PubMed  CAS  Google Scholar 

  33. D’Amore PA, Thompson RW: Mechanisms of angiogenesis. Anm Rev Physiol 1987; 49:453–464

    Article  Google Scholar 

  34. Senger DR, Perruzzi CA, Feder J, Dvorak HF: A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Canc Res 1986; 46:5629–5632

    CAS  Google Scholar 

  35. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219:983–985

    Article  PubMed  CAS  Google Scholar 

  36. Dvorak HF, Sioussat TM, Brown LF, et al.: Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Expt Med 1991; 174:1275–1278

    Article  CAS  Google Scholar 

  37. Schaper W: Coronary collateral development: concepts and hypothesis. In: Collateral Circulation: Heart, Brain, Kidney, Limbs, edited by Schaper W and Schaper J. Boston: Kluwer Academic Publishers, 1993, p. 41–64.

    Google Scholar 

  38. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD: Mechanisms of neovascularization: Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 1984; 51:624–634

    PubMed  CAS  Google Scholar 

  39. Nicosia RF, Bonanno E, Smith M: Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 1993; 154:654–661

    Article  PubMed  CAS  Google Scholar 

  40. Schaper J, Weibrauch D: Collateral vessel development in the porcine and canine heart. In: Collateral circulation: heart, brain, kidney, limbs, edited by Schaper W and Schaper J. Norwell, MA: Kluwer Academic Publishers, 1993, p. 65–102.

    Google Scholar 

  41. Schaper W, de Brabander M, Lewi P: DNA synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 1971; 28:671–679

    Article  PubMed  CAS  Google Scholar 

  42. Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, Steinseifer B: DNA synthesis in coronary collaterals after coronary artery occlusion in conscious dog. Am J Physiol 1982; 242:H1031–H1037

    PubMed  CAS  Google Scholar 

  43. Cowan DF, Hollenberg NK, Connelly CM, Williams DH, Abrams HL: Increased collateral arterial and venous endothelial cell turnover after renal artery stenosis in the dog. Invest Radiol 1978; 13:143–149

    Article  PubMed  CAS  Google Scholar 

  44. Ilich N, Hollenberg NK, Williams DH, Abrams H: Time course of increased collateral arterial and venous endothelial cell turnover after renal artery stenosis in rat. Circ Res 1979; 45:579-532

    Google Scholar 

  45. White FC, Carroll SM, Magnet A, Bloor CM: Coronary collateral development in swine after coronary artery occlusion. Circ Res 1992; 71:1490–1500

    Article  PubMed  CAS  Google Scholar 

  46. Schaper W, Schaper J, Xhonneux R, Vandesteene R: The morphology of intercoronary anastomoses in chronic coronary artery occlusion. Cardiovasc Res 1969; 3:315–323

    Article  PubMed  CAS  Google Scholar 

  47. Graham AM, Baffour R, Burdon T, et al.: A demonstration of vascular proliferation in response to arteriovenous reversal in the ischemie canine hind limb. J Surg Res 1989; 47:341–347

    Article  PubMed  CAS  Google Scholar 

  48. Symes JF, Graham AM, Stein L, Sniderman AD: Salvage of a severely ischemic limb by arteriovenous revascularization: a case report. Can J Surg 1984; 27:274–276

    PubMed  CAS  Google Scholar 

  49. Unger EF, Banai S, Shou M, et al.: Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994; 266:H1588–H1595

    PubMed  CAS  Google Scholar 

  50. Takeshita S, Rossow ST, Kearney M, et al.: Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am J Pathol 1995;147(6):1649–1660.

    PubMed  CAS  Google Scholar 

  51. Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  52. Herbert JM, Lamarche I, Prabonnaud V, Dol F, Gauthier T: Tissue-type plasminogen activator is a potent mitogen for human aortic smooth muscle cells. J Biol Chem 1994; 269:3076–3080

    PubMed  CAS  Google Scholar 

  53. Pepper MS, Ferrara N, Orci L, Montesano R: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor type 1 in microvascular endothelial cells. Biochem Biophys Res Commun 1994; 189:824–831

    Article  Google Scholar 

  54. Ross R, Glomset B, Kariya B, Harker L: A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 1974; 71:1207–1210

    Article  PubMed  CAS  Google Scholar 

  55. Collins T, Ginsburg D, Boss JM, Orkin SH, Pober JS: Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structual analysis. Nature 1985; 316:748–750

    Article  PubMed  CAS  Google Scholar 

  56. Collins T, Pober JS, Gimbrone MA Jr, Betsholtz C, Westermark B, Heldin C-H: Cultured human endothelial cells express platelet-derived factor A chain. Am J Pathol 1987; 126:7–12

    PubMed  CAS  Google Scholar 

  57. Zerwes H-G, Risau W: Polarized secretion of a platelet-derived growth factor-like chemotactic factor by endothelial cells in vitro. J Cell Biol 1987; 105:2037–2041

    Article  PubMed  CAS  Google Scholar 

  58. Gay CG, Winkles JA: Heparin-binding growth factor-1 stimulation of human endothelial cells induces platelet-derived growth factor A-chain gene expression. J Biol Chem 1990; 265:3284–3292

    PubMed  CAS  Google Scholar 

  59. Roberts AB, Sporn MB, Assoian RK, et al.: Transforming growth factor type-beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83:4167–4171

    Article  PubMed  CAS  Google Scholar 

  60. Risau W, Drexler H, Mironov V, et al.: Platelet-derived growth factor is angiogenic in vivo. Growth Factors 1992; 7:261–266

    Article  PubMed  CAS  Google Scholar 

  61. Lindner V, Lappi DA, Baird RA, Majack RA, Reidy, MA: Role of basic fibroblast growth factor in vascular lesion formation. CircRes 1991; 68:106–113

    CAS  Google Scholar 

  62. Lindner V, Reidy MA: Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. Circ Res 1993; 73:589–595

    Article  PubMed  CAS  Google Scholar 

  63. Beitz JG, Kim IS, Calabresi P, Frackelton AR: Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc Natl Acad Sci USA 1991; 88:2021–2025

    Article  PubMed  CAS  Google Scholar 

  64. Smite A, Hermansson M, Nister M, Kamushina I, Heldin C-H, Oberg K: Rat brain capillary endothelial cells express functional PDGF B-type receptors. Growth Factors 1989; 2:1–8

    Article  Google Scholar 

  65. Bar RS, Boes M, Booth BA, Dake BL, Henley S, Hart MN: The effects of platelet-derived growth factor in cultured microvessel endothelial cells. Endocrinology 1989; 124:2021–2025

    Article  Google Scholar 

  66. D’Amore P, Smith SR: Growth factor effects on cells of the vascular wall: a survey. Growth Factors 1993; 8:61–75

    Article  PubMed  Google Scholar 

  67. Pierce GF, Tarpley JE, Yanagihara D, Mustoe TE, Fox GM, Thomason A: Platelet derived growth factor (BB homodimer), transforming growth factor-betal, and basic fibroblast growth factor in dermal wound healing. Am J Pathol 1992; 140:1375–1388

    PubMed  CAS  Google Scholar 

  68. Sims DE: The pericyte-a review. Tissue Cell 1986; 18:153–174

    Article  PubMed  CAS  Google Scholar 

  69. Sundberg C, Ljungstrom M, Lindmark G, Gerdin B, Rubin K: Microvascular pericytes express platelet-derived growth factor-b receptors in human healing wounds and colorectal adenocarcinoma. Am J Pathol 1993; 143:1377–1388

    PubMed  CAS  Google Scholar 

  70. Sato N, Beitz JG, Kato J, et al.: Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 1993; 142:1119–1139

    PubMed  CAS  Google Scholar 

  71. Brogi E, Wu T, Namiki A, Isner JM: Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 1994; 90:649–652

    Article  PubMed  CAS  Google Scholar 

  72. Pepper MS, Vassalli JD, Orci L, Montesano R: Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp Cell Res 1993; 204:356–363

    Article  PubMed  CAS  Google Scholar 

  73. Chen JK, Hoshi H, McKeehan WL: Transforming growth factor type b specifically stimulates synthesis of proteoglycans in human adult arterial smooth muscle cells. Proc Natl Acad Sci USA 1987; 84:5287–5291

    Article  PubMed  CAS  Google Scholar 

  74. Madri JA, Pratt BM, Tucker AM: Phenotypic modulation of endothelial cells by transforming growth factor-b depends upon the composition and organization of the extracellular matrix. J Cell Biol 1993; 106:1375–1384

    Article  Google Scholar 

  75. Winkles JA, Gay CG: Serum, phorbol ester, and polypeptide mitogens increase class 1 and 2 Heparin binding (acidic and basic fibroblast growth factor) gene expression in human vascular smooth muscle cells. Cell Growth & Differ 1991; 2:531–540

    CAS  Google Scholar 

  76. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Science 1992; 359:843–845

    CAS  Google Scholar 

  77. Tischer E, Mitchell R, Hartman T, et al.: The human gene for vascular endothelial growth factor. J Biol Chem 1991; 266:11947–11954

    PubMed  CAS  Google Scholar 

  78. Wang GL, Semenza GL: Characterization of hypoxia-inducible factor I and regulation of DNA binding activity by hypoxia. Blood 1993; 268:21513–21518

    CAS  Google Scholar 

  79. Goto F, Goto K, Weindel K, Folkman J: Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation of bovine capillary endothelial cells within collagen gels. Lab Invest 1993; 69:508–517

    PubMed  CAS  Google Scholar 

  80. Asahara T, Bauters C, Pastore CJ, et al.: Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimai hyperplasia in balloon-injured rat carotid artery. Circulation 1995;1;91(11):2793–2801

    Article  PubMed  CAS  Google Scholar 

  81. Asahara T, Bauters C, Pastore CJ et al.: Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995; 91:2793–2801

    Article  PubMed  CAS  Google Scholar 

  82. Klagsbrun M, Folkman J: Angiogenesis. In: Peptide Growth Factors and Their Receptors II, edited by Sporn MB and Roberts AB New York: Springer-Verlag, 1990, p. 459–586.

    Google Scholar 

  83. Asahara T, Bauters C, Zheng LP, et al.: Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo.Circulation 1995;1;92(9 Suppl).II365–371.

    PubMed  CAS  Google Scholar 

  84. Wilting J, Christ B, Bokeloh M, Weich HA: In vivo effects of vascular endothelial growth factor on the chicken chorioallantoic membrane. Cell TissueRes 1993; 68:106–113

    Google Scholar 

  85. Klagsbrun M, Baird A: A duel receptor system is required for basic fibroblast growth factor activity. Cell 1991; 67:229–231

    Article  PubMed  CAS  Google Scholar 

  86. Park JE, Chen HH, Winer J, Houck KA, Ferrara N: Placenta growth factor: potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269:25646–25654

    PubMed  CAS  Google Scholar 

  87. Isner JM, Walsh K, Symes J, et al.: Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995; 91:2687–2692

    Article  PubMed  CAS  Google Scholar 

  88. Fisher M, Meadows ME, Do T, et al.: Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1995;15(6):953–959.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Isner, J.M. (1997). Angiogenesis and Collateral Formation. In: March, K.L. (eds) Gene Transfer in the Cardiovascular System. Developments in Cardiovascular Medicine, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6277-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6277-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7881-5

  • Online ISBN: 978-1-4615-6277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics