Skip to main content

Renal Metabolism

  • Chapter
Contemporary Nephrology

Abstract

Considerable progress has been made in increasing our understanding of renal metabolism. Because of the rapidly expanding nature of this area, it has not been possible to review all aspects of the field. Rather the authors have chosen to review selected areas of particular relevance that were not covered in Volume 1 of Contemporary Nephrology. It is hoped that the emphasis of this chapter can be altered in successive editions to encompass the wide range of important work being performed. The reader is referred to a recent comprehensive review by Cohen and Kamm.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, J. J. and Kamm, D. E., 1981, Renal metabolism: Relation to renal function, in: The Kidney (B. M. Brenner and F. C. Rector Jr., eds.), W. B. Saunders, Philadelphia, pp. 144–248.

    Google Scholar 

  2. Ross, B. D., 1978, The isolated perfused rat kidney, Clin. Sci. Molec. Med. 55:513.

    CAS  Google Scholar 

  3. Maack, T., 1980, Physiological evaluation of the isolated perfused rat kidney, Am. J. Physiol. 238:F71.

    PubMed  CAS  Google Scholar 

  4. Squires, E. J., Hall, D. E., and Brosnan, J. T., 1976, Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats, Biochem. J. 160:125.

    PubMed  CAS  Google Scholar 

  5. Levy, M. N., 1962, Uptake of lactate and pyruvate by intact kidney of the dog, Am. J. Physiol. 202:302.

    PubMed  CAS  Google Scholar 

  6. Little, J. R. and Spitzer, J. J., 1971, Uptake of ketone bodies by dog kidney in vivo, Am. J. Physiol. 221:679.

    CAS  Google Scholar 

  7. Gregg, C. M., Cohen, J. J., Black, A. J., Espeland, M. A., and Feldstein, M. L., 1978, Effects of glucose and insulin on metabolism and function of perfused rat kidney, Am. J. Physiol. 235:F52.

    PubMed  CAS  Google Scholar 

  8. Ross, B. D., Epstein, F. H., and Leaf, A., 1973, Sodium reabsorption in the perfused rat kidney, Am. J. Physiol. 225:1165.

    PubMed  CAS  Google Scholar 

  9. Cohen, J. J., Merkens, L. S., and Peterson, O. W., 1980, Relation of Na + reabsorption to utilization of O2 and lactate in the perfused rat kidney, Am. J. Physiol. 238:F415.

    PubMed  CAS  Google Scholar 

  10. Cohen, J. J. and Little, J. R., 1976, Lactate metabolism in the isolated perfused rat kidney: Relations to renal function and gluconeogenesis,J. Physiol. 255:399.

    PubMed  CAS  Google Scholar 

  11. Cohen, J. J., Kook, Y. J., and Little, J. R., 1977, Substrate-limited function and metabolism of the isolated perfused rat kidney: Effects of lactate and glucose,J. Physiol. 266:103.

    PubMed  CAS  Google Scholar 

  12. Zapol, W. M., Levy, R. I., Kolobow, T., Spragg, R., and Bowman, R. L., 1969, In vitro denaturation of plasma α-lipoproteins by bubble oxygenation in the dog, Curr. Top. Surg. Res. 1:449.

    Google Scholar 

  13. Lee, W. H., Jr., Krumhaar, D., Fonkalsrud, E. W., Schjeide, O. A., and Maloney, J. V., Jr., 1961, Denaturation of plasma proteins as a cause of morbidity and death after intracardiac operations, Surgery 50:29.

    PubMed  CAS  Google Scholar 

  14. Little, J. R. and Cohen, J. J., 1974, Effects of albumin concentration on function of isolated perfused rat kidney, Am. J. Physiol. 226:512.

    PubMed  CAS  Google Scholar 

  15. Kolobow, T. and Bowman, R. L., 1963, Construction and evaluation of an alveolar membrane artificial heart-lung, Trans. Amer. Soc. Artif. Int. Organs 9:238.

    CAS  Google Scholar 

  16. Hamilton, R. L., Berry, M. N., Williams, M. C., and Severinghaus, E. M., 1974, A simple and inexpensive membrane “lung” for small organ perfusion,J. Lipid Res. 15:182.

    PubMed  CAS  Google Scholar 

  17. Bauman, A. W., Clarkson, T. W., and Miles, E. M., 1963, Functional evaluation of isolated perfused rat kidney,J. Appl. Physiol. 18:1239.

    PubMed  CAS  Google Scholar 

  18. Starling, E. H. and Verney, E. B., 1925, The secretion of urine as studied on the isolated kidney, Proc. R. Soc, Ser. B 97:321.

    Article  CAS  Google Scholar 

  19. Kupfer, S., Thompson, D. D., and Pitts, R. F., 1951, The isolated kidney and its response to diuretic agents, Am. J. Physiol. 167:703.

    PubMed  CAS  Google Scholar 

  20. Franke, H., Huland, H., Weiss, Ch., and Unsicker, K., 1971, Improved net sodium transport of the isolated rat kidney, Z. Ges. Exp. Med. 156:268.

    Article  CAS  Google Scholar 

  21. Schurek, H. J., Brecht, J. P., Lohfert, H., and Hierholzer, K., 1975, The basic requirements for the function of the isolated cell free perfused rat kidney, Pflügers Arch. 354:349.

    Article  PubMed  CAS  Google Scholar 

  22. Bowman, R. H., 1970, Gluconeogenesis in the isolated perfused rat kidney, J. Biol. Chem. 245:1604.

    PubMed  CAS  Google Scholar 

  23. Hanson, R. W. and Ballard, F. J., 1968, Citrate, pyruvate, and lactate contaminants of commercial serum albumin,J. Lipid Res. 9:667.

    PubMed  CAS  Google Scholar 

  24. Nishiitsutsuji-Uwo, J. M., Ross, B. D., and Krebs, H. A., 1967, Metabolic activities of the isolated perfused rat kidney, Biochem. J. 103:852.

    PubMed  CAS  Google Scholar 

  25. Chen, R. F., 1967, Removal of fatty acids from serum albumin by charcoal treatment,J. Biol Chem. 242:173.

    PubMed  CAS  Google Scholar 

  26. Bowman, R. H. and Maack, T., 1974, Effect of albumin concentration and ADH on H20 and electrolyte transport in perfused rat kidney, Am. J. Physiol. 226:426.

    PubMed  CAS  Google Scholar 

  27. Spitzer, A. and Windhager, E. E., 1970, Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption, Am. J. Physiol. 218:1188.

    PubMed  CAS  Google Scholar 

  28. Schurek, H. and Alt, J. M., 1981, Effect of albumin on the function of the perfused rat kidney, Am. J. Physiol. 240:F569.

    PubMed  CAS  Google Scholar 

  29. Swanson, J. W., Besarab, A., Pomerantz, P. P., and DeGuzman, A., 1981, Effect of erythrocytes and globulin on renal functions of the isolated rat kidney, Am. J. Physiol. 241:F 139.

    Google Scholar 

  30. Zamlauski, M. J., 1981, The effect of increasing substrate-free albumin (SFA) concentration on renal function in the isolated perfused rat kidney: Perfusion with a low concentration of SFA as a method by which to investigate substrate-specificity of proximal and distal nephron function, Ph.D. Thesis, University of Rochester, Department of Physiology.

    Google Scholar 

  31. Little, J. R. and Robinson, J. R., 1963, Composition and “functional distension” of the rat’s renal cortex, J. Physiol. 165:542.

    PubMed  CAS  Google Scholar 

  32. Baylis, C., Ichikawa, I., Willis, W. T., Wilson, C. B., and Brenner, B. M., 1977, Dynamics of glomerular ultrafiltration. IX. Effects of plasma protein concentration, Am. J. Physiol. 232:F58.

    PubMed  CAS  Google Scholar 

  33. Zamlauski-Tucker, M. J. and Cohen, J. J., 1980, Effect of increasing concentrations of substrate-free albumin (SFA) on isolated perfused rat kidney function, Physiologist 23:Abst. 77.

    Google Scholar 

  34. Cortell, S., Davidman, M., Gennari, F. J., and Schwartz, W. B., 1972, Catheter size as a determinant of outflow resistance and intrarenal pressure, Am. J. Physiol. 223:910.

    PubMed  CAS  Google Scholar 

  35. Weiss, C., Passow, H., and Rothstein, A., 1959, Autoregulation of flow in isolated rat kidney in the absence of red cells, Am. J. Physiol. 196:1115.

    PubMed  CAS  Google Scholar 

  36. Scholer, D. W. and Edelman, I.S., 1979, Isolation of rat kidney cortical tubules enriched in proximal and distal segments, Am. J. Physiol. 237:F350.

    PubMed  CAS  Google Scholar 

  37. Balaban, R. S., Soltoff, S. P., Storey, J. M., and Mandel, L. J., 1980, Improved renal cortical tubule suspension: Spectrophotometric study of O2 delivery, Am. J. Physiol. 238:F50.

    PubMed  CAS  Google Scholar 

  38. Vinay, P., Gougoux, A., and Lemieux, G., 1981, Isolation of a pure suspension of rat proximal tubules, Am. J. Physiol. 241:F403.

    PubMed  CAS  Google Scholar 

  39. Balaban, R. S. and Sylvia, A. L., 1981, Spectrophotometric monitoring of O2 delivery to the exposed rat kidney, Am. J. Physiol. 241:F257.

    PubMed  CAS  Google Scholar 

  40. Mandel, L. J., 1982, Use of noninvasive fluorometry and spectrophotometry to study epithelial metabolism and transport, Fed. Proc. 41:36.

    PubMed  CAS  Google Scholar 

  41. Balaban, R. S., Dennis, V. W., and Mandel, L. J., 1981, Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules, Am. J. Physiol. 240:F337.

    PubMed  CAS  Google Scholar 

  42. Biber, J., Stieger, B., Haase, W., and Murer, H., 1981, A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers, Biochim. Biophys. Acta 647:169.

    Article  PubMed  CAS  Google Scholar 

  43. Scalera, V., Storelli, C., Storelli-Joss, C., Haase, W., and Murer, H., 1980, A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells, Biochem. J. 186:177.

    PubMed  CAS  Google Scholar 

  44. Scalera, V., Huang, Y. K., Hildmann, B., and Murer, H., 1981, A simple isolation method for basal-lateral plasma membranes from rat kidney cortex, Membr. Biochem. 4:49.

    Article  PubMed  CAS  Google Scholar 

  45. Inui, K-I., Okaus, T., Takano, M., Kitazawa, S., and Hori, R., 1981, A simple method for the isolation of basolateral plasma membrane vesicles from rat kidney cortex. Enzyme activities and some properties of glucose transport, Biochim. Biophys. Acta 647:150.

    Article  PubMed  CAS  Google Scholar 

  46. Foidart, J. B., DuBois, C. H., Foidart, J-M., Dechenne, C. A., and Mahieu, P., 1980, Tissue culture of normal rat glomeruli. Basement membrane biosynthesis by homogeneous epithelial and mesangial cell lines, Int. J. Biochem. 12:197.

    Article  PubMed  CAS  Google Scholar 

  47. Ausiello, D. A., Kreisberg, J. I., Roy, C., and Karnovsky, M. J., 1980, Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin, J. Clin. Invest. 65:754.

    Article  PubMed  CAS  Google Scholar 

  48. Mahieu, P. R., Foidart, J. B., DuBois, C. H., Dechenne, C. A., and De-heneffe, J., 1980, Tissue culture of normal rat glomeruli: Contractile activity of the cultures mesangial cells, Invest. Cell Pathol. 3:121.

    PubMed  CAS  Google Scholar 

  49. Handler, J. S., Perkins, F. M., and Johnson, J. P., 1980, Studies of renal cell function using cell culture techniques, Am. J. Physiol. 238:F1.

    PubMed  CAS  Google Scholar 

  50. Richardson, J. C. W., Scalera, V., and Simmons, N. L., 1981, Identification of two strains of MDCK cells which resemble separate nephron tubule segments, Biochim. Biophys. Acta 673:26.

    Article  PubMed  CAS  Google Scholar 

  51. Gordon, R. E., Hanley, P. E., Shaw, D., Gadian, D. G., Radda, G. K., Styles, P., Bore, P. J-, and Chan, L., 1980, Localization of metabolites in animals using 31P topical magnetic resonance, Nature 287:737.

    Google Scholar 

  52. Ackerman, J. J. H., Grove, T. H., Wong, G. G., Gadian, D. G., and Radda, G. K., 1980, Mapping of metabolites in whole animals by 31P NMR using surface coils, Nature 283:167.

    Article  PubMed  CAS  Google Scholar 

  53. Roberts, J. K. M. and Jardetzky, O., 1981, Monitoring of cellular metabolism by NMR, Biochim. Biophys. Acta 639:53.

    PubMed  CAS  Google Scholar 

  54. Sehr, P. A., Radda, G. K., Bore, P. J., and Sells, R. A., 1977, A model kidney transplant studied by phosphorus nuclear magnetic resonance, Biochem. Biophys. Res. Commun. 77:195.

    Article  PubMed  CAS  Google Scholar 

  55. Radda, G. K., Ackerman, J. J. H., Bore, P., Sehr, P., Wong, G. G., Ross, B. D., Green, Y., Bartlett, S., and Lowry, M., 1980, 31P-NMR studies on kidney intracellular pH in acute renal acidosis, Int. J. Biochem. 12:277.

    Article  PubMed  CAS  Google Scholar 

  56. Balaban, R. S., Gadian, D. G., and Radda, G. K., 1981, Phosphorus nuclear magnetic resonance study of the rat kidney in vivo, Kidney Int. 20:575.

    Article  PubMed  CAS  Google Scholar 

  57. Balaban, R. S., 1982, Nuclear magnetic resonance studies of epithelial metabolism and function, Fed. Proc. 41:42.

    PubMed  CAS  Google Scholar 

  58. Ackerman, J. J. H., Lowry, M., Radda, G. K., Ross, B. D., and Wong, G. G., 1981, The role of intrarenal pH in regulation of ammoniagenesis: [31P]NMR studies of the isolated perfused rat kidney,J. Physiol. 319:65.

    PubMed  CAS  Google Scholar 

  59. Murer, H. and Kinne, R., 1980, The use of isolated membrane vesicles to study epithelial transport processes,J. Membr. Biol. 55:81.

    Article  PubMed  CAS  Google Scholar 

  60. Murer, H., Stern, H., Burckhardt, G., Storelli, C., and Kinne, R., 1980, Sodium-dependent transport of inorganic phosphate across the renal brush border membrane, Adv. Exp. Med. Biol. 128:11.

    PubMed  CAS  Google Scholar 

  61. Burckhardt, G., Stern, H., and Murer, H., 1981, The influence of pH on phosphate transport into rat renal brush border membrane vesicles, Pflügers Arch. 390:191.

    Article  PubMed  CAS  Google Scholar 

  62. Cheng, L. and Sacktor, B., 1981, Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles,J. Biol. Chem. 256:1556.

    PubMed  CAS  Google Scholar 

  63. Sacktor, B. and Cheng, L., 1981, Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles: Effect of an intra vesicular > extravesicular proton gradient,J. Biol. Chem. 256:8080.

    PubMed  CAS  Google Scholar 

  64. Steele, T. H., Challoner-Hue, L., Gottstein, J. H., Stromberg, B. A., and Underwood, J. L., 1982, Acid-base maneuvers and phosphate transport in the isolated rat kidney, Pflügers Arch. 392:178.

    Article  Google Scholar 

  65. Thierry, J., Poujeol, P., and Ripoche, P., 1981, Interactions between Na + -dependent uptake of D-glucose, phosphate and L-alanine in rat renal brush border membrane vesicles, Biochim. Biophys. Acta 647:203.

    Article  PubMed  CAS  Google Scholar 

  66. Storelli, C. and Murer, H., 1980, On the correlation between alkaline phosphatase and phosphate transport in rat renal brush border membrane vesicles, Pflügers Arch. 384:149.

    Article  PubMed  CAS  Google Scholar 

  67. Petitclerc, C. and Plante, G. E., 1981, Renal transport of phosphate: Role of alkaline phosphatase, Can. J. Physiol. Pharmacol. 59:311.

    Article  PubMed  CAS  Google Scholar 

  68. Dousa, T. P., Kempson, S. A., and Shah, S. V., 1980, Adaptive changes in renal cortical brush border membrane, Adv. Exp. Med. Biol. 128:69.

    PubMed  CAS  Google Scholar 

  69. Hammerman, M. R., Karl, I. E., and Hruska, K. A., 1980, Regulation of canine renal vesicle Pj transport by growth hormone and parathyroid hormone, Biochim. Biophys. Acta 603:322.

    Article  PubMed  CAS  Google Scholar 

  70. Hruska, K. and Hammerman, M. R., 1981, Parathyroid hormone inhibition of phosphate transport in renal brush border vesicles from phosphate-depleted dogs, Biochim. Biophys. Acta 645:351.

    Article  PubMed  CAS  Google Scholar 

  71. Brazy, P. C., Balaban, R. S., Gullans, S. R., Mandel, L. J., and Dennis, V. W., 1980, Inhibition of renal metabolism. Relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule,J. Clin. Invest. 66:1211.

    Article  PubMed  CAS  Google Scholar 

  72. Kempson, S. A., Shah, S. V., Werness, P. G., Berndt, T., Lee, P. H., Smith, L. H., Knox, F. G., and Dousa, T. P., 1980, Renal brush border membrane adaptation to phosphorus deprivation: Effects of fasting versus low-phosphorus diet, Kidney Int. 18:36.

    Article  PubMed  CAS  Google Scholar 

  73. Kempson, S. A., Colon-Otero, G., Ou, S-Y. L., Turner, S. T., and Dousa, T. P., 1981, Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat,J. Clin. Invest. 67:1347.

    Article  PubMed  CAS  Google Scholar 

  74. Kreusser, W. J., Descoeudres, C., Oda, Y., Massry, S. G., and Kurokawa, K., 1980, Effect of phosphate depletion on renal gluconeogenesis, Miner. Electrolyte Metab. 3:312.

    CAS  Google Scholar 

  75. Barrett, P. Q., Gertner, J. M., and Rasmussen, H., 1980, Effect of dietary phosphate on transport properties of pig renal microvillus vesicles, Am. J. Physiol. 239:F352.

    PubMed  CAS  Google Scholar 

  76. Ramasamy, I. and Butterworth, P. J., 1973, The inhibition of pig kidney alkaline phosphatase by oxidized or reduced nicotinamide-adenine dinucleotide and related compounds, Biochem. J. 131:359.

    PubMed  CAS  Google Scholar 

  77. Ou, S-Y. L., Kempson, S. A., and Dousa, T. P., 1981, Relationship between rate of gluconeogenesis and content of nicotinamide adenine dinucleotide in renal cortex, Life Sci. 29:1195.

    Article  PubMed  CAS  Google Scholar 

  78. Ross, B. D. and Tannen, R. L., 1979, Effect of decrease in bicarbonate concentration on metabolism of the isolated perfused rat kidney, Clin. Sci. 57:103.

    PubMed  CAS  Google Scholar 

  79. Williamson, D. H., Lund, P., and Krebs, H. A., 1967, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103:514.

    PubMed  CAS  Google Scholar 

  80. Schäfer, J. A. and Barfuss, D. W., 1980, Membrane mechanisms for trans-epithelial amino acid absorption and secretion, Am. J. Physiol. 238:F335.

    PubMed  Google Scholar 

  81. Weiss, S. D., McNamara, P. D., Pepe, L. M., and Segal, S., 1978, Glutamine and glutamic acid uptake by rat renal brush border membrane vesicles,J. Membr. Biol. 43:91.

    Article  PubMed  CAS  Google Scholar 

  82. Schneider, E. G., Hammerman, M. R., and Sacktor, B., 1980, Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism, J. Biol. Chem. 255:7650.

    PubMed  CAS  Google Scholar 

  83. Murer, H., Leopolder, A., Kinne, R., and Burckhardt, G., 1980, Recent observations on the proximal tubular transport of acidic and basic amino acids by rat renal proximal tubular brush border vesicles, Int. J. Biochem. 12:223.

    Article  PubMed  CAS  Google Scholar 

  84. Sacktor, B. and Schneider, E. G., 1980, The singular effect of an internal K+ gradient (Ki + > K0 +) on the Na+ gradient (Na0 + > Nai +)-dependent transport of L-glutamate in renal brush border membrane vesicles, Int. J. Biochem. 12:229.

    Article  PubMed  CAS  Google Scholar 

  85. Burckhardt, G., Kinne, R., Stange, G., and Murer, H., 1980, The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake, Biochim. Biophys. Acta 599:191.

    Article  PubMed  CAS  Google Scholar 

  86. Schneider, E. G. and Sacktor, B., 1980, Sodium gradient-dependent l-glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular > extravesicular potassium gradient,J. Biol. Chem. 255:7645.

    PubMed  CAS  Google Scholar 

  87. Sacktor, B., 1981, L-glutamate transport in renal plasma membrane vesicles, Mol. Cell. Biochem. 39:239.

    Article  PubMed  CAS  Google Scholar 

  88. Sacktor, B., Rosenbloom, I. L., Liang, C. T., and Cheng, L., 1981, Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles,J. Membr. Biol. 60:63.

    Article  PubMed  CAS  Google Scholar 

  89. Wright, S. H., Kippen, I., and Wright, E. M., 1982, Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes, Biochim. Biophys. Acta 684:287.

    Article  PubMed  CAS  Google Scholar 

  90. Blomstedt, J. W. and Aronson, P. S., 1980, pH gradient-stimulated transport of urate and /?-aminohippurate in dog renal microvillus membrane vesicles,J. Clin. Invest. 65:931.

    Article  PubMed  CAS  Google Scholar 

  91. Ormstad, K., Jones, D. P., and Orrenius, S., 1980, Characteristics of glutathione biosynthesis by freshly isolated rat kidney cells,J. Biol. Chem. 255:175.

    PubMed  CAS  Google Scholar 

  92. Ormstad, K., Lastbom, T., and Orrenius, S., 1980, Translocation of amino acids and glutathione studied with the perfused kidney and isolated renal cells, FEBS Lett. 112:55.

    Article  PubMed  CAS  Google Scholar 

  93. Mclntyre, T. M. and Curthoys, N. P., 1980, The interorgan metabolism of glutathione, Int. J. Biochem. 12:545.

    Article  Google Scholar 

  94. Meister, A., 1981, Metabolism and functions of glutathione, Trends Biochem. Sci. 6:231.

    Article  CAS  Google Scholar 

  95. Silverman, M., 1981, Glucose reabsorption in the kidney, Can. J. Physiol. Pharmacol. 59:209.

    PubMed  CAS  Google Scholar 

  96. Hammerman, M. R., Sacktor, B., and Daughaday, W. H., 1980, Myoinositol transport in renal brush border vesicles and its inhibition by d-glucose, Am. J. Physiol. 239:F113.

    PubMed  CAS  Google Scholar 

  97. Wilson, F. A., Burckhardt, G., Murer, H., Rumrich, G., and Ullrich, K.J., 1981, Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro, J. Clin. Invest. 67:1141.

    Article  CAS  Google Scholar 

  98. Carafoli, E., 1979, The calcium cycle of mitochondria, FEBS Lett. 104:1.

    Article  PubMed  CAS  Google Scholar 

  99. Nicholls, D. G. and Crompton, M., 1980, Mitochondrial calcium transport, FEBS Lett. 111:261.

    Article  PubMed  CAS  Google Scholar 

  100. Denton, R. M. and McCormack, J. G., 1980, On the role of the calcium transport cycle in heart and other mammalian mitochondria, FEBS Lett. 119:1.

    Article  PubMed  CAS  Google Scholar 

  101. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19.

    Article  PubMed  CAS  Google Scholar 

  102. Fiskum, G. and Lehninger, A., 1980, The mechanisms and regulation of mitochondrial Ca2+ transport, Fed. Proc. 39:2432.

    PubMed  CAS  Google Scholar 

  103. Denton, R. M. and McCormack, J. G., 1981, Calcium ions, hormones and mitochondrial metabolism, Clin. Sci. 61:135.

    PubMed  CAS  Google Scholar 

  104. Nicholls, D., 1981, Some recent advances in mitochondrial calcium transport, Trends Biochem. Sci. 6:36.

    Article  CAS  Google Scholar 

  105. Haworth, R. A., Hunter, D. R., and Berkoff, H. A., 1980, Na+ releases Ca2+ from liver, kidney and lung mitochondria, FEBS Lett. 110:216.

    Article  PubMed  CAS  Google Scholar 

  106. Dawson, A. P., Selwyn, M. J., and Fulton, D. V., 1979, Inhibition of Ca2+ efflux from mitochrondria by nupercaine and tetracaine, Nature (London) 277:484.

    Article  CAS  Google Scholar 

  107. Fiskum, G. and Lehninger, A. L., 1979, Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport,J. Biol. Chem. 254:6236.

    PubMed  CAS  Google Scholar 

  108. Lehninger, A. L., Vercesi, A., and Bababunmi, E. A., 1978, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. U.S.A. 75:1690.

    Article  PubMed  CAS  Google Scholar 

  109. Nicholls, D. G. and Brand, M. D., 1980, The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides, Biochem. J. 188:113.

    PubMed  CAS  Google Scholar 

  110. Palmer, J. W. and Pfeiffer, D. R., 1981, The control of Ca2+ release from heart mitochondria,J. Biol. Chem. 256:6742.

    PubMed  CAS  Google Scholar 

  111. Roos, I., Crompton, M., and Carafoli, E., 1980, The role of inorganic phosphate in the release of Ca2+ from rat liver mitochondria, Eur. J. Biochem. 110:319.

    Article  PubMed  CAS  Google Scholar 

  112. Zoccarato, F. and Nicholls, D. G., 1981, Phosphate-independent calcium efflux from liver mitochondria, FEBS Lett. 128:275.

    Article  PubMed  CAS  Google Scholar 

  113. Roman, I., Gmaj, P., Nowicka, C., and Angielski, S., 1979, Regulation of Ca2+ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na+ ions, Eur. J. Biochem. 102:615.

    Article  PubMed  CAS  Google Scholar 

  114. Nicholls, D. G., 1978, The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria, Biochem. J. 176:463.

    PubMed  CAS  Google Scholar 

  115. Murphy, E. and Mandel, L. J., 1982, Cytosolic free calcium levels in rabbit proximal kidney tubules, Am. J. Physiol. 242:C124.

    PubMed  CAS  Google Scholar 

  116. Murphy, E., Coll, K., Rich, T. L., and Williamson, J. R., 1980, Hormonal effects on calcium homeostasis in isolated hepatocytes.J. Biol. Chem. 255:6600.

    PubMed  CAS  Google Scholar 

  117. Kurokawa, K. and Rasmussen, H., 1973, Ionic control of renal gluconeo-genesis: I. The interrelated effect of calcium and hydrogen ions, Biochim. Biophys. Acta 313:17.

    Article  PubMed  CAS  Google Scholar 

  118. Alleyne, G. A. O., Flores, H., and Roobol, A., 1973, The interrelationship of the concentration of hydrogen ions, bicarbonate ions, carbon dioxide and calcium ions in the regulation of renal gluconeogenesis in the rat, Biochem. J. 136:445.

    PubMed  CAS  Google Scholar 

  119. Klahr, S. and Mennes, P., 1978, The role of calcium ion in renal gluconeogenesis: Studies using ionophore A23187, in Biochemical Nephrology: Current Problems in Clinical Biochemistry: 8 (W. G. Guder and U. Schmidt, eds.), Huber, Bern, pp. 318–325.

    Google Scholar 

  120. Logan, A. G. and Chatzilias, A., 1980, The role of calcium in the control of renin release from the isolated rat kidney, Can. J. Physiol. Pharmacol. 58:60.

    Article  PubMed  CAS  Google Scholar 

  121. Craven, P. A. and DeRubertis, F. R., 1980, Calcium and O2-dependent control of inner medullary cGMP: Possible role for Ca2+-dependent ar-achidonate release and prostaglandin synthesis in expression of the action of osmolality on renal inner medullary guanosine 3′5′monophosphate, Metabolism 29:842.

    Article  PubMed  CAS  Google Scholar 

  122. Craven, P. A., Studer, R. K., and DeRubertis, F. R., 1981, Renal inner medullary prostaglandin synthesis. A calcium-calmodulin-dependent process suppressed by urea,J. Clin. Invest. 68:722.

    Article  PubMed  CAS  Google Scholar 

  123. Studer, R. K. and Borle, A. B., 1979, Effect of pH on the calcium metabolism of isolated rat kidney cells,J. Membr. Biol. 48:325.

    Article  PubMed  CAS  Google Scholar 

  124. Alleyne, G. A. O., 1970, Renal metabolic response to acid-base changes. II. The early effects of metabolic acidosis on renal metabolism in the rat, J. Clin. Invest. 49:943.

    Article  PubMed  CAS  Google Scholar 

  125. Hems, D. A. and Brosnan, J. T., 1971, Effects of metabolic acidosis and starvation on the content of intermediary metabolites in rat kidney, Biochem. J. 123:391.

    PubMed  CAS  Google Scholar 

  126. Narins, R. G. and Relman, A. S., 1974, Acute effects of acidosis on am-moniagenic pathways in kidneys of the intact rat, Am. J. Physiol. 227:946.

    PubMed  CAS  Google Scholar 

  127. Balagura-Baruch, S., Shurland, L. M., and Welbourne, T. C., 1970, Effects of α-ketoglutarate on renal ammonia release in the intact dog, Am. J. Physiol. 218:1070.

    PubMed  CAS  Google Scholar 

  128. Welbourne, T. C. and Balagura-Baruch, S., 1972, Renal metabolism of glutaminę in dogs during infusion of α-ketoglutaric acid, Am. J. Physiol. 223:663.

    Google Scholar 

  129. Goldstein, L., 1976, α-Ketoglutarate regulation of glutaminę transport and deamination by renal mitochondria, Biochem. Biophys. Res. Comm. 70:1136.

    Article  PubMed  CAS  Google Scholar 

  130. Goldstein, L. and Boylan, J. M., 1978, Renal mitochondrial glutaminę transport and metabolism: Studies with a rapid-mixing, rapid-filtration technique, Am. J. Physiol. 234:F514.

    PubMed  CAS  Google Scholar 

  131. Schoolwerth, A. C., HoOver, W. J., Daniel, C. H., and LaNoue, K. F., 1980, Effect of aminooxyacetate and α-ketoglutarate on glutamate deamination by rat kidney mitochondria, Int. J. Biochem. 12:145.

    Article  PubMed  CAS  Google Scholar 

  132. Strzelecki, T. and SchoOlwerth, A. C., 1981, α-Ketoglutarate modulation of glutamine metabolism by rat renal mitochondria, Biochem. Biophys. Res. Comm. 102:588.

    Article  PubMed  CAS  Google Scholar 

  133. Goodman, A. D., Fuisz, R. E., and Cahill, G. F., 1966, Renal gluconeo-genesis in acidosis, alkalosis and potassium deficiency: Its possible role in regulation of renal ammonia production,J. Clin. Invest. 45:612.

    Article  PubMed  CAS  Google Scholar 

  134. Boyd, T. A. and Goldstein, L., 1979, Kidney metabolite levels and ammonia production in acute acid-base alterations in the rat, Am. J. Physiol. 236:E289.

    PubMed  CAS  Google Scholar 

  135. Vinay, P., Allignet, E., Pichette, C., Watford, M., Lemieux, G., and Gougoux, A., 1980, Changes in renal metabolite profile and ammoniagenesis during acute and chronic metabolic acidosis in dog and rat, Kidney Int. 17:312.

    Article  PubMed  CAS  Google Scholar 

  136. Lowry, M. and Ross, B. D., 1980, Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis, Biochem. J. 190:771.

    PubMed  CAS  Google Scholar 

  137. McCormack, J. G. and Denton, R. M., 1979, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex, Biochem. J. 180:533.

    PubMed  CAS  Google Scholar 

  138. Lawlis, V. B. and Roche, T. E., 1980, Effect of micromolar Ca2+ on NADH inhibition of bovine kidney α-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification, Mol. Cell. Biochem. 32:147.

    Article  PubMed  CAS  Google Scholar 

  139. Lawlis, V. B. and Roche, T. E., 1981, Regulation of bovine kidney α-ketoglutarate dehydrogenase complex by calcium ion and adenine nucleotides. Effects on S0.5 for α-ketoglutarate, Biochemistry 20:2512.

    Article  PubMed  CAS  Google Scholar 

  140. Lawlis, V. B. and Roche, T. E., 1981, Inhibition of bovine kidney α-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine din-ucleotide in the presence or absence of calcium ion and effect of adenosine 5′-diphosphate on reduced nicotinamide adenine dinucleotide inhibition, Biochemistry 20:2519.

    Article  PubMed  CAS  Google Scholar 

  141. Vandewalle, A., Wirthensohn, G., Heidrich, H. G., and Guder, W. G., 1981, Distribution of hexokinase and phosphoenolpyruvate carboxykinase along the rabbit nephron, Am. J. Physiol. 240:F492.

    PubMed  CAS  Google Scholar 

  142. Burch, H. B., Narins, R. G., Chu, C., Fagioli, S., Choi, S., McCarthy, W., and Lowry, O. H., 1978, Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation, Am. J. Physiol. 235:F246.

    PubMed  CAS  Google Scholar 

  143. Guder, W. G. and Schmidt, U., 1974, The localization of gluconeogenesis in rat nephron: Determination of phosphoenolpyruvate carboxykinase in microdissected tubules, Hoppe-Seyler’s Z. Physiol. Chem. 355:273.

    Article  PubMed  CAS  Google Scholar 

  144. Klein, K. L., Wang, M-S., Torikai, S., Davidson, W. D., and Kurokawa, K., 1981, Substrate oxidation by isolated single nephron segments of the rat, Kidney Int. 20:29.

    Article  PubMed  CAS  Google Scholar 

  145. Schmid, H., Mall, A., Scholz, M., and Schmidt, U., 1980, Unchanged glycolytic capacity in rat kidney under conditions of stimulated gluconeogenesis, Hoppe-Seyler’s Z. Physiol. Chem. 361:819.

    Article  PubMed  CAS  Google Scholar 

  146. Silbernagl, S., 1980, Tubular reabsorption of L-glutamine studied by free flow micropuncture and microperfusion of rat kidney, Int. J. Biochem. 12:9.

    Article  PubMed  CAS  Google Scholar 

  147. Maleque, A., Endou, H., Koseki, C., and Sakai, F., 1980, Nephron heterogeneity: Gluconeogenesis from pyruvate in rabbit nephron, FEBS Lett. 116:154.

    Article  PubMed  CAS  Google Scholar 

  148. Kessar, P. and Saggerson, E. D., 1980, Evidence that catecholamines stimulate renal gluconeogenesis through an α1-type of adrenoceptor, Biochem. J. 190:119.

    PubMed  CAS  Google Scholar 

  149. Saggerson, E. D. and Carpenter, C. A., 1980, Effect of compound D-600 (methoxyverapamil) on gluconeogenesis and on acceleration of the process by α-adrenergic stimuli in rat kidney tubules, Biochem. J. 190:283.

    PubMed  CAS  Google Scholar 

  150. Mandel, L. J. and Balaban, R. S., 1981, Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues, Am. J. Physiol. 240:F357.

    PubMed  CAS  Google Scholar 

  151. Harris, S. I., Balaban, R. S., and Mandel, L. J., 1980, Oxygen consumption and cellular ion transport: Evidence that the ATP/O2 ratio is near 6 in the intact cell, Science 208:1148.

    Article  PubMed  CAS  Google Scholar 

  152. Cohen, J. J. and Kamm, D. E., 1976, Renal metabolism: Relation to renal function, in The Kidney (B. M. Brenner and F. C. Rector, Jr., eds.), W. B. Saunders, Philadelphia, pp. 126–214.

    Google Scholar 

  153. Kinne, R., 1979, Metabolic correlates of tubular transport, in: Membrane Transport in Biology, Vol. 4B (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer-Verlag, Berlin, pp. 529–562.

    Google Scholar 

  154. Harris, S. I., Balaban, R. S., Barrett, L., and Mandel, L. J., 1981, Mitochondrial respiratory capacity and Na +- and K +-dependent adenosine tri-phosphatase-mediated ion transport in the intact renal cell,J. Biol. Chem. 256:10319.

    PubMed  CAS  Google Scholar 

  155. Balaban, R. S., Mandel, L. J., Soltofl, S. P., and Storey, J. M., 1980, Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules, Proc. Natl. Acad. Sci. USA 77:447.

    Article  PubMed  CAS  Google Scholar 

  156. Cass A. and Dalmark, M., 1973, Equilibrium dialysis of ions in nystatin-treated red cells, Nature New Biol. 244:47.

    Article  PubMed  CAS  Google Scholar 

  157. Cohen, J. J., Merkens, L. S., and Peterson, O. W., 1980, Relation of Na + reabsorption to utilization of O2 and lactate in the perfused rat kidney, Am. J. Physiol. 238:F415.

    PubMed  CAS  Google Scholar 

  158. Deetjen, P. and Kramer, K., 1961, Die Abhängigkeit des O2-Verbrauchs der Niere von der Na+ Rückresorption, Pflügers Arch. 273:636.

    Article  CAS  Google Scholar 

  159. Knox, F. G., Fleming, J. S., and Rennie, D. W., 1966, Effect of osmotic diuresis on sodium reabsorption and oxygen consumption of kidney, Am. J. Physiol. 219:751.

    Google Scholar 

  160. Silva, P., Hallac, R., Swartz, R., and Epstein, F. H., 1980, Competition between different metabolic demands for oxygen consumption in the kidney, Int. J. Biochem. 12:251.

    Article  PubMed  CAS  Google Scholar 

  161. Ross, B., Silva, P., and Bullock, S., 1981, Role of the malate-aspartate shuttle in renal sodium transport in the rat, Clin. Sci. 60:419.

    PubMed  CAS  Google Scholar 

  162. Silva, P., Ross, B., and Spokes, K., 1980, Competition between sodium reabsorption and gluconeogenesis in kidneys of steroid-treated rats, Am. J. Physiol. 238:F290.

    PubMed  CAS  Google Scholar 

  163. Cohen, J. J., 1967, Significance of respiratory quotients in toad bladder and kidney, Nature 216:399.

    Article  PubMed  CAS  Google Scholar 

  164. Hohenleitner, F. J. and Spitzer, J. J., 1961, Changes in plasma free fatty acid concentrations on passage through the dog kidney, Am. J. Physiol. 200:1095.

    PubMed  CAS  Google Scholar 

  165. Barac-Nieto, M. and Cohen, J. J., 1968, Nonesterified fatty acid uptake by dog kidney: Effects of probenecid and chlorothiazide, Am. J. Physiol. 215:98.

    PubMed  CAS  Google Scholar 

  166. Barac-Nieto, M. and Cohen, J. J., 1971, The metabolic fates of palmitate in dog kidney in vivo. Evidence for incomplete oxidation, Nephron 8:488.

    Article  PubMed  CAS  Google Scholar 

  167. Lee, J. B., Vance, V. K., and Cahill, G. F., Jr., 1962, Metabolism of 14C-labeled substrates by rabbit kidney cortex and medulla, Am. J. Physiol. 203:27.

    PubMed  CAS  Google Scholar 

  168. Weidemann, M. J. and Krebs, H. A., 1969, The fuel of respiration of rat kidney cortex, Biochem. J. 112:149.

    PubMed  CAS  Google Scholar 

  169. Spector, A. A., 1975, Fatty acid binding to plasma albumin,J. Lipid Res. 16:165.

    PubMed  CAS  Google Scholar 

  170. Barac-Nieto, M., 1971, Renal uptake of p-aminohippuric acid in vitro, Biochim. Biophys. Acta 233:446.

    Article  CAS  Google Scholar 

  171. Woodhall, P. B., Fisher, C. C., Simonton, C. A., and Robinson, R. R., 1978, Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules,J. Clin. Invest. 61:1320.

    Article  PubMed  CAS  Google Scholar 

  172. Ockner, R. K., Manning, J. A., Poppenhausen, R. B., and Lo, W. K. L., 1972, A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium and other tissues, Science 177:56.

    Article  PubMed  CAS  Google Scholar 

  173. Spector, A. A., Steinberg, D., and Tanaka, A., 1965, Uptake of free fatty acids by Ehrlich ascites tumor cells,J. Biol. Chem. 240:1032.

    PubMed  CAS  Google Scholar 

  174. Wakil, S. J., 1970, Fatty acid metabolism, in: Lipid Metabolism (S. J. Wakil, ed.), Academic Press, New York, pp. 1–48.

    Google Scholar 

  175. Schölte, H. R. and Groot, P. H. E., 1975, Organ and intracellular localization of short-chain acyl-CoA synthetases in rat and guinea pig, Biochim. Biophys. Acta 409:283.

    PubMed  Google Scholar 

  176. Magne, A., 1971, Organ and subcellular distribution of fatty acid activating enzymes in the rat, Biochim. Biophys. Acta 231:32.

    Google Scholar 

  177. Pande, S. V. and Mead, J. F., 1968, Distribution of long-chain fatty acid-activating enzymes in rat tissues, Biochim. Biophys. Acta 152:636.

    PubMed  CAS  Google Scholar 

  178. DeHaan, E. J., Groot, G. S. P., Schölte, H. R., Tager, J. M., and Wit-Peeters, E. M., 1973, Biochemistry of muscle mitochondria, in: The Structure and Function of Muscle (G. H. Bourne, ed.), Academic Press, New York, pp. 417–469.

    Google Scholar 

  179. Pande, S. V., 1973, Reversal by CoA of palmityl-CoA inhibition of long-chain acyl-CoA synthetase activity, Biochim. Biophys. Acta 306:15.

    PubMed  CAS  Google Scholar 

  180. Oram, J. F., Wenger, J. I., and Neely, J. R., 1975, Regulation of long-chain fatty acid activation in heart muscle,J. Biol. Chem. 250:73.

    PubMed  CAS  Google Scholar 

  181. Pande, S. V. and Blanchaer, M. C., 1971, Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long-chain acyl coenzyme A esters,J. Biol. Chem. 246:402.

    PubMed  CAS  Google Scholar 

  182. Oram, J. F., Bennetch, S. L., and Neely, J. R., 1973, Regulation of fatty acid utilization in isolated perfused rat hearts,J. Biol. Chem. 248:5299.

    PubMed  CAS  Google Scholar 

  183. Idell-Wenger, J. A., Grotyohann, L. W., and Neely, J. R., 1978, Coenzyme A and carnitine distribution in normal and ischemic hearts,J. Biol. Chem. 253:4310.

    PubMed  CAS  Google Scholar 

  184. Pande, S. V., 1973, Reversal by CoA of palmityl-CoA inhibition of long chain acyl-CoA synthetase activity, Biochim. Biophys. Acta 306:15.

    PubMed  CAS  Google Scholar 

  185. Pande, S. V., 1971, On rate-controlling factors of long-chain fatty acid oxidation,J. Biol Chem. 246:5384.

    PubMed  CAS  Google Scholar 

  186. Idell-Wenger, J. A. and Grotyohann, L. W., 1981, Cellular distribution of Coenzyme A and carnitine and mitochondrial translocation of carnitine and short-chain acylcarnitine esters in kidney cortex, Fed. Proc. 40:1781.

    Google Scholar 

  187. Fritz, I. B. and Yue, K. T. N., 1963, Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine,J. Lipid Res. 4:279.

    PubMed  CAS  Google Scholar 

  188. Bressler, R., 1970, Physiological-chemical aspects of fatty acid oxidation, in: Lipid Metabolism (S.J. Wakil, ed.), Academic Press, New York, pp. 49–75.

    Google Scholar 

  189. Barth, C., Sladek, M., and Decker, K., 1971, The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues, Biochim. Biophys. Acta 248:24.

    PubMed  CAS  Google Scholar 

  190. Choi, Y. R., Clarke, P. R. H., and Bieber, L. L., 1979, Studies on the oxidation of isobutyrylcarnitine by beef and rat liver mitochondria,J. Biol. Chem. 254:5580.

    PubMed  CAS  Google Scholar 

  191. Van Hinsbergh, V. W., Veerkamp, J. H., Engelen, P. M. J., and Ghijsen, W. J., 1978, Effect of L-carnitine on the oxidation of leucine and valine by rat skeletal muscle, Biochem. Med. 20:115.

    Article  PubMed  Google Scholar 

  192. Ramsay, R. R. and Tubbs, P. K., 1975, The mechanism of fatty acid uptake by heart mitochondria: An acylcarnitine-carnitine exchange, FEBS Lett. 54:21.

    Article  PubMed  CAS  Google Scholar 

  193. Ramsay, R. R. and Tubbs, P. K., 1976, The effects of temperature and some inhibitors on the carnitine exchange system of heart mitochondria, Eur. J. Biochem. 69:299.

    Article  PubMed  CAS  Google Scholar 

  194. Pande, S. V. and Parvin, R., 1976, Characterization of carnitine acylcarnitine translocase system of heart mitochondria,J. Biol. Chem. 251:6683.

    PubMed  CAS  Google Scholar 

  195. Parvin, R. and Pande, S. V., 1979, Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions,J. Biol. Chem. 254:5423.

    PubMed  CAS  Google Scholar 

  196. Idell-Wenger, J. A., 1981, Carnitine : acylcarnitine translocase of rat heart mitochondria. Competition for carnitine uptake by carnitine esters,J. Biol. Chem. 256:5597.

    PubMed  CAS  Google Scholar 

  197. Saggerson, E. D. and Carpenter, C. A., 1981, Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart, FEBS Lett. 129:229.

    Article  PubMed  CAS  Google Scholar 

  198. Idell-Wenger, J. A. and Neely, J. R., 1978, Regulation of uptake and metabolism of fatty acids by muscle, in: Disturbances in Lipid and Lipoprotein Metabolism (J. M. Dietschy, A. M. Gotto, Jr., and J. A. Ontko, eds.), American Physiological Society, Bethesda, Maryland, pp. 269–284.

    Google Scholar 

  199. Heimberg, M., Wilcox, H. C., Dunn, G. D., Woodside, W. F., Breen, K. T., and Soler-Argilaga, C., 1974, Studies on the regulation of secretion of the very low density lipoprotein and on ketogenesis by the liver, in: Regulation of Hepatic Metabolism (F. Lundquist and N. Tygstrup, eds.), Munksgaard, Copenhagen, pp. 119–141.

    Google Scholar 

  200. Böhmer, T., Norum, K. R., and Bremer, J., 1966, The relative amounts of long-chain acylcarnitine, acetylcarnitine and free carnitine in organs of rats in different nutritional states and with alloxan diabetes, Biochim. Biophys. Acta 125:244.

    Google Scholar 

  201. Fogle, P. J. and Bieber, L. L., 1979, Effect of streptozotocin on carnitine and carnitine acyltransferases in rat heart, liver and kidney, Biochem. Med. 22:119.

    Article  PubMed  CAS  Google Scholar 

  202. Reibel, D. K., Wyse, B. W., Berkich, D. A., Palko, W. M., and Neely, J. R., 1981, Effects of diabetes and fasting on pantothenic acid metabolism in rats, Am. J. Physiol 240:E597.

    PubMed  CAS  Google Scholar 

  203. Hall, C. J., Lambeth, J. D., and Kamin, H., 1979, Acyl-CoA complexes of general acyl-CoA dehydrogenase and electron transfer flavoprotein,J. Biol. Chem. 254:2023.

    PubMed  CAS  Google Scholar 

  204. Wit-Peeters, E. M., Schölte, H. R., Van Den Akker, F., and De Nie, I., 1971, Intramitochondrial localization and palmityl-CoA dehydrogenase β-hydroxylacyl-CoA dehydrogenase and enoyl-CoA hydratase in guinea-pig heart, Biochim. Biophys. Acta 231:23.

    PubMed  CAS  Google Scholar 

  205. Bradshaw, R. A. and Noyes, B. E., 1975, L-3-hydroxyacyl-CoA dehydrogenase from pig heart muscle, Meth. Enzymol. 35:122.

    Article  PubMed  CAS  Google Scholar 

  206. Gehring, U. and Lynen, F., 1972, Thiolase, in: The Enzymes, Volume 7 (P. D. Boyer, ed.), Academic Press, New York, pp. 391–405.

    Google Scholar 

  207. Moore, K. H., Koen, A. E., and Hull, F. E., 1982, β-Hydroxy fatty acid production by ischemic rabbit heart: Distribution and chemical states, J. Clin. Invest. 69:377.

    Article  PubMed  CAS  Google Scholar 

  208. Stewart, H. B., Tubbs, P. K., and Stanley, K. K., 1973, Intermediates in fatty acid oxidation, Biochem. J., 132:61.

    PubMed  CAS  Google Scholar 

  209. Stanley, K. K. and Tubbs, P. K., 1975, The role of intermediates in fatty acid oxidation, Biochem. J. 150:77.

    PubMed  CAS  Google Scholar 

  210. Lopes-Cardozo, M., Klazinga, W., and van den Bergh, S. G., 1978, Accumulation of carnitine esters of β-oxidation intermediates during palmitate oxidation by rat-liver mitochondria, Eur. J. Biochem. 83:629.

    Article  PubMed  CAS  Google Scholar 

  211. Horak, H. and Pritchard, E. T., 1971, ß-Hydroxypalmitoylcarnitine formation in rat submandibular salivary gland mitochondria, Biochim. Biophys. Acta 248:515.

    CAS  Google Scholar 

  212. Bremer, J. and Wojtczak, A. B., 1972, Factors controlling the rate of fatty acid β-oxidation in rat liver mitochondria, Biochim. Biophys. Acta 280:515.

    PubMed  CAS  Google Scholar 

  213. Osmundsen, H. and Bremer, J., 1977, A spectrophotometric procedure for rapid and sensitive measurements of β-oxidation. Demonstration of factors that can be rate-limiting for ß-oxidation, Biochem. J. 164:621.

    PubMed  CAS  Google Scholar 

  214. Christiansen, E. N. and Davis, E. J., 1978, The effects of coenzyme A and carnitine on steady-state ATP/ADP ratios and the rate of long-chain free fatty acid oxidation in liver mitochondria, Biochim. Biophys. Acta 502:17.

    Article  PubMed  CAS  Google Scholar 

  215. Idell-Wenger, J. A. and Neely, J. R., 1977, Effects of ischemia on myocardial fatty acid oxidation, in: Pathophysiology and Therapeutics of Myocardial Ischemia (A. M. Lefer, G. J. Kelliher, and M. J. Rovetto, eds.), Spectrum Publications, New York, pp. 227–238.

    Google Scholar 

  216. Choi, Y. R., Fogle, P. J., Clarke, P. R. H., and Bieber, L. L., 1977, Quantitation of water-soluble acylcarnitines and carnitine acyltransferases in rat tissues,J. Biol. Chem. 252:7930.

    PubMed  CAS  Google Scholar 

  217. Bremer, J., 1962, Carnitine in intermediary metabolism. Reversible acetylation of carnitine by mitochondria,J. Biol. Chem. 237:2228.

    PubMed  CAS  Google Scholar 

  218. Bremer, J., 1962, Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria,J. Biol. Chem. 237:3628.

    PubMed  CAS  Google Scholar 

  219. Huth, P. J. and Shug, A. L., 1980, Properties of carnitine transport in rat kidney cortex slices, Biochim. Biophys. Acta 602:621.

    Article  PubMed  CAS  Google Scholar 

  220. Brass, E. P. and Hoppel, C. L., 1978, Disassociation between acid-insoluble acylcarnitines and ketogenesis following carnitine administration in vivo, J. Biol. Chem. 253:5274.

    CAS  Google Scholar 

  221. Fröhlich, J., Seccombe, D. W., Hahn, P., and Hynie, I., 1978, Effect of fasting on free and esterified carnitine levels in human serum and urine: Correlation with serum levels of free fatty acids and ß-hydroxybutyrate, Metabolism 27:555.

    Article  PubMed  Google Scholar 

  222. Cox, R. A. and Hoppel, C. L., 1973, Biosynthesis of carnitine and 4–N-trimethylaminobutyrate from 6-N-trimethyl-lysine, Biochem. J. 136:1083.

    PubMed  CAS  Google Scholar 

  223. Englard, S. and Carnicero, H. H., 1978, γ-Butyrobetaine hydroxylation to carnitine in mammalian kidney, Arch. Biochem. Biophys. 190:361.

    Article  PubMed  CAS  Google Scholar 

  224. Rebouche, C.J. and Engel, A. C., 1980, Significance of renal γ-butyrobe-taine hydroxylase for carnitine biosynthesis in man,J. Biol. Chem. 255:8700.

    PubMed  CAS  Google Scholar 

  225. Carter, A. L. and Frenkel, R., 1979, The role of the kidney in the biosynthesis of carnitine in the rat,J. Biol. Chem. 254:10670.

    PubMed  CAS  Google Scholar 

  226. Broquist, H. P., 1980, Carnitine biosynthesis in Neurospora crassa, in: Carnitine Biosynthesis, Metabolism, and Functions (R. A. Frenkel and J. D. Mc-Garry, eds.), Academic Press, New York, pp. 7–17.

    Google Scholar 

  227. Henderson, L. M., Hülse, J. D., and Henderson, L. L., 1980, Purification of the enzymes involved in the conversion of trimethyllysine to trimethyl-aminobutyrate, in: Carnitine Biosynthesis, Metabolism, and Functions (R. A. Frenkel and J. D. McGarry, eds.), Academic Press, New York, pp. 35–43.

    Google Scholar 

  228. Rebouche, C. J. and Engel, A. G., 1980, Tissue distribution of carnitine biosynthetic enzymes in man, Biochim. Biophys. Acta 630:22.

    Article  PubMed  CAS  Google Scholar 

  229. Engel, A. G. and Angelini, C., 1973, Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: A new syndrome, Science 179:899.

    Article  PubMed  CAS  Google Scholar 

  230. Engel, A. G., 1980, Possible causes and effects of carnitine deficiency in man, in: Carnitine Biosynthesis, Metabolism, and Functions (R. A. Frenkel and J. D. McGarry, eds.), Academic Press, New York, pp. 271–284.

    Google Scholar 

  231. Rebouche, C. J. and Engel, A. G., 1981, Primary systemic carnitine deficiency: I. Carnitine biosynthesis, Neurology 31:813.

    PubMed  CAS  Google Scholar 

  232. Engel, A. G., Rebouche, C. J., Wilson, D. M., Glasgow, A. M., Romshe, C. A., and Cruse, R. P., 1981, Primary systemic carnitine deficiency: II. Renal handling of carnitine, Neurology 31:819.

    PubMed  CAS  Google Scholar 

  233. Böhmer, T., Bergrem, H., and Eiklid, K., 1978, Carnitine deficiency induced during intermittent haemodialysis for renal failure, Lancet 1:126.

    Article  PubMed  Google Scholar 

  234. Bartel, L. L., Hussey, J. L., and Shrago, E., 1981, Perturbation of serum carnitine levels in human adults by chronic renal disease and dialysis therapy, Am. J. Clin. Nutr. 34:1314.

    PubMed  CAS  Google Scholar 

  235. Bertoli, M., Battistella, P. A., Vergani, L., Naso, A., Gasparotto, M. L., Romagnoli, G. F., and Angelini, C., 1981, Carnitine deficiency induced during hemodialysis and hyperlipidemia: Effect of replacement therapy, Am. J. Clin. Nutr. 34:1496.

    PubMed  CAS  Google Scholar 

  236. Gusmano, R., Oleggini, R., and Perfumo, F., 1981, Plasma carnitine concentrations and dyslipidemia in children on maintenance hemodialysis,J. Pediatr. 99:429.

    Article  PubMed  CAS  Google Scholar 

  237. Bizza, A., Mingardi, G., Codegoni, A. M., Mecca, G., and Garattini, S., 1978, Accelerated recovery of post-dialysis plasma carnitine fall by oral carnitine, Biomedicine 29:183.

    Google Scholar 

  238. Mingardi, M., Bizzi, M., Cini, M., Licini, R., Mecca, G., and Garattini, S., 1980, Carnitine balance in hemodialyzed patients, Clin. Nephrol. 13:269.

    PubMed  CAS  Google Scholar 

  239. Bizzi, A., Cini, M., Garattini, S., Mingardi, G., Licini, L., and Mecca, G., 1979, L-Carnitine addition to haemodialysis fluid prevents plasma carnitine deficiency during dialysis, Lancet 1:882.

    Article  PubMed  CAS  Google Scholar 

  240. Bougneres, P. F., Lacour, B., DiGiulio, S., and Assan, R., 1979, Hypolipaemic effect of carnitine in uraemic patients, Lancet 1:1401.

    Article  PubMed  CAS  Google Scholar 

  241. Bazzato, G., Mezzina, C., Ciman, M., and Guarnieri, G., 1979, Myasthenia-like syndrome associated with carnitine in patients on long-term haemodialysis, Lancet 1:1041.

    Article  PubMed  CAS  Google Scholar 

  242. Bell, R. M. and Coleman, R. A., 1980, Enzymes of glycerolipid synthesis in eukaryotes, Ann. Rev. Biochem. 49:459.

    Article  PubMed  CAS  Google Scholar 

  243. Morgan, T. E., Tinker, D. O., and Hanahan, D. J., 1963, Phospholipid metabolism in kidney. I. Isolation and identification of lipids of rabbit kidney, Arch. Biochem. Biophys. 103:54.

    Article  PubMed  CAS  Google Scholar 

  244. Gold, M., 1970, An investigation of the lipid metabolism of dog kidney medulla and cortex, Lipids 5:293.

    Article  PubMed  CAS  Google Scholar 

  245. Huang, J. S., Downes, G. L., and Beizer, F. O., 1971, Utilization of fatty acids in perfused hypothermic dog kidney,J. Lipid Res. 12:622.

    PubMed  CAS  Google Scholar 

  246. Wirthensohn, G. and Guder, W. G., 1980, Triacylglycerol metabolism in isolated rat kidney cortex tubules, Biochem. J. 186:317.

    PubMed  CAS  Google Scholar 

  247. Cohen, J. J. and Fonteles, M. C., 1981, Support of renal function by fatty acids derived from renal tissue lipids, Kidney Int. 19:221.

    Google Scholar 

  248. Singer, S. J. and Nicolson, G. L., 1972, The fluid mosaic model of the structure of membranes, Science 175:720.

    Article  PubMed  CAS  Google Scholar 

  249. Rouser, G., Simon, G., and Kritchevsky, G., 1969, Species variations in phospholipid class distribution of organs: I. Kidney, liver and spleen, Lipids 4:599.

    Article  PubMed  CAS  Google Scholar 

  250. Havener, L. J. and Toback, F. G., 1980, Amino acid modulation of renal phosphatidylcholine biosynthesis in the rat,J. Clin. Invest. 65:741.

    Article  PubMed  CAS  Google Scholar 

  251. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81.

    PubMed  CAS  Google Scholar 

  252. Hawthorne, J. N. and White, D. A., 1975, Myo-inositol lipids, Vitam. Horm. 33:529.

    Article  PubMed  CAS  Google Scholar 

  253. Schacht, J., Weiner, N. D., and Lodhi, S., 1978, Interaction of aminocyclitol antibiotics with polyphosphoinositides in mammalian tissues and artificial membranes, in: Cyclitols and Phosphoinositides (W. W. Wells and F. Eisenberg, Jr., eds.), Academic Press, New York, pp. 153–165.

    Google Scholar 

  254. Hokin, M. R. and Hokin, L. E., 1964, Interconversions of phosphatidyli-nositol and phosphatidic acid involved in the response to acetylcholine in the salt gland, in: Metabolism and Physiological Significance of Lipids (R. M. C. Dawson and D. N. Rhodes, eds.), John Wiley & Sons, New York, pp. 423–434.

    Google Scholar 

  255. Hokin, L. E. and Hokin, M. R., 1958, Phosphoinositides and protein secretion in pancreas,J. Biol. Chem. 233:805.

    PubMed  CAS  Google Scholar 

  256. Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1977, Phosphatidy-linositol-degrading enzymes in liver lysosomes, Biochem. J. 164:277.

    PubMed  CAS  Google Scholar 

  257. Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1978, The hydrolysis of phosphatidylinositol by lysosomal enzymes of rat liver and brain, Biochem. J. 176:475.

    PubMed  CAS  Google Scholar 

  258. Dawson, R. M. C. and Hemington, N., 1977, A phosphodiesterase in rat kidney cortex that hydrolyses glycerylphosphorylinositol, Biochem. J. 162:241.

    PubMed  CAS  Google Scholar 

  259. Dawson, R. M. C., Hemington, N., Richards, D. E., and Irvine, R. F., 1979, sn-Glycero(3)phosphoinositol glycerophosphohydrolase, Biochem. J. 182:39.

    PubMed  CAS  Google Scholar 

  260. Dawson, R. M. C., 1959, Studies on the enzymie hydrolysis of monophos-phoinositide by phospholipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68.

    Article  PubMed  CAS  Google Scholar 

  261. Kemp, P., Hubscher, G., and Hawthorne, J. N., 1961, Phosphoinositides. 3. Enzymie hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193.

    PubMed  CAS  Google Scholar 

  262. Dawson, R. M. C., Freinkel, N., Jungalwala, F. B., and Clarke, N., 1971, The enzymie formation of myoinositol 1 : 2-cyclic phosphate from phosphatidylinositol, Biochem. J. 122:605.

    PubMed  CAS  Google Scholar 

  263. Dawson, R. M. C. and Clarke, N., 1972, D-Myoinositol 1 : 2-cyclic phosphate 2-phosphohydrolase, Biochem. J. 127:113.

    PubMed  CAS  Google Scholar 

  264. Hawthorne, J. N., 1982, Is phosphatidylinositol now out of the calcium gate?, Nature 295:281.

    Article  PubMed  CAS  Google Scholar 

  265. Huggins, C. G. and Cohn, D. V., 1959, Studies concerning the composition, distribution, and turnover of phosphorus in a phosphatidopeptide fraction from mammalian tissue,J. Biol. Chem. 234:257.

    PubMed  CAS  Google Scholar 

  266. Andrade, F. and Huggins, C. G., 1964, Myo-inositol phosphates in a phosphoinositide complex from kidney, Biochim. Biophys. Acta 84:681.

    PubMed  CAS  Google Scholar 

  267. Lee, T. C. and Huggins, C. G., 1968, Triphosphoinositide Phosphomonoesterase in rat kidney cortex. I. General properties and subcellular localization, Arch. Biochem. Biophys. 126:206.

    Article  PubMed  CAS  Google Scholar 

  268. Lee, T. C. and Huggins, C. G., 1968, Triphosphoinositide Phosphomonoesterase in rat kidney cortex. II. Purification and characterization, Arch. Biochem. Biophys. 126:214.

    Article  PubMed  CAS  Google Scholar 

  269. Tou, J. S., Hurst, M. W., and Huggins, C. G., 1968, A phosphatidylinositol kinase in rat kidney cortex, Arch. Biochem. Biophys. 127:54.

    Article  PubMed  CAS  Google Scholar 

  270. Tou, J. S., Hurst, M. W., and Huggins, C. G., 1969, Phosphatidylinositol kinase in rat kidney cortex. II. Subcellular distribution and kinetic properties, Arch. Biochem. Biophys. 131:596.

    Article  PubMed  CAS  Google Scholar 

  271. Tou, J. S., Hurst, M. W., Huggins, C. G., and Foor, W. E., 1970, Biosynthesis of triphosphoinositide in rat kidney cortex, Arch. Biochem. Biophys. 140:492.

    Article  PubMed  CAS  Google Scholar 

  272. Tou, J. S., Hurst, M. W., Baricos, W. H., and Huggins, C. G., 1973, The hydrolysis of triphosphoinositide by a phosphodiesterase in rat kidney cortex, Arch. Biochem. Biophys. 154:593.

    Article  PubMed  CAS  Google Scholar 

  273. Tou, J. S., Hurst, M. W., Baricos, W. H., and Huggins, C. G., 1972, The metabolism of phosphoinositides in rat kidney, in vivo, Arch. Biochem. Biophys. 149:146.

    Article  CAS  Google Scholar 

  274. Baricos, W. H., Hurst, M. W., and Huggins, C. G., 1979, The effects of cyclic nucleotides and some related agents on 32Pi labelling of renal polyphosphoinositides in vitro, Arch. Biochem. Biophys. 196:227.

    Article  CAS  Google Scholar 

  275. Schibeci, A. and Schacht, J., 1977, Action of neomycin on the metabolism of polyphosphoinositides in the guinea pig kidney, Biochem. Pharmacol. 26:1769.

    Article  PubMed  CAS  Google Scholar 

  276. Lodhi, S., Weiner, N. D., and Schacht, J., 1976, Interactions of neomycin and calcium in synaptosomal membranes and polyphosphoinositide monolayers, Biochim. Biophys. Acta 426:781.

    Article  PubMed  CAS  Google Scholar 

  277. Hauser, H. and Dawson, R. M. C., 1967, The binding of calcium at lipid-water interfaces, Eur. J. Biochem. 1:61.

    Article  PubMed  CAS  Google Scholar 

  278. Kaloyanides, G. J., Wang, M., Gouvea, W., Kelley, J., Alpert, H., and Vaamonde, C. A., 1982, Altered phosphatidylinositol (PI) metabolism in diabetic (D) rats confers resistance to gentamicin-induced acute renal failure (G-ARF), Kidney Int. 21:219.

    Google Scholar 

  279. Karlsson, K.-A., Samuelsson, B. E., and Steen, G. O., 1973, The sphingolipid composition of bovine kidney cortex, medulla and papilla, Biochim. Biophys. Acta 316:317.

    PubMed  CAS  Google Scholar 

  280. Karlsson, K.-A., Samuelsson, B. E., and Steen, G. O., 1973, Detailed structure of sphingomyelins and ceramides from different regions of bovine kidney with special references to long-chain bases, Biochim. Biophys. Acta 316:336.

    PubMed  CAS  Google Scholar 

  281. Kawanami, J., 1968, Glycolipids from rat kidney,J. Biochem. 64:625.

    PubMed  CAS  Google Scholar 

  282. Jeanloz, R. W. and Codington, J. F., 1976, The biological role of sialic acid at the surface of the cell, in: Biological Roles of Sialic Acid (A. Rosenberg and C-L. Schengrund, eds.), Plenum Press, New York, pp. 201–238.

    Chapter  Google Scholar 

  283. Puro, K., Maury, P., and Huttunen, J. K., 1969, Qualitative and quantitative patterns of gangliosides in extraneural tissues, Biochim. Biophys. Acta 187:230.

    PubMed  CAS  Google Scholar 

  284. Puro, K. and Keränen, A., 1969, Fatty acids and sphingosines of bovine-kidney gangliosides, Biochim. Biophys. Acta 187:393.

    PubMed  CAS  Google Scholar 

  285. Puro, K., 1969, Carbohydrate components of bovine-kidney gangliosides, Biochim. Biophys. Acta 189:401.

    Google Scholar 

  286. Rauvala, H., 1976, Gangliosides of human kidney,J. Biol. Chem. 251:7517.

    PubMed  CAS  Google Scholar 

  287. Rauvala, H., 1976, Isolation and partial characterization of human kidney gangliosides, Biochim. Biophys. Acta 424:284.

    PubMed  CAS  Google Scholar 

  288. Rauvala, H., Krusius, T., and Finne, J., 1978, Disialosyl paragloboside. A novel ganglioside isolated from human kidney, Biochim. Biophys. Acta 531:266.

    PubMed  CAS  Google Scholar 

  289. Karlsson, K.-A., Samuelsson, B. E., and Steen, G. O., 1974, The lipid composition and Na + -K +-dependent adenosine-triphosphatase activity of the salt (nasal) gland of eider duck and herring gull. A role for sulphatides in sodium-ion transport, Eur. J. Biochem. 46:243.

    Article  PubMed  CAS  Google Scholar 

  290. Karlsson, K.-A., Samuelsson, B. E., and Steen, G. O., 1968, Sulfatides and sodium ion transport, sphingolipid composition of the rectal gland of spiny dogfish, FEBS Lett. 2:4.

    Article  PubMed  CAS  Google Scholar 

  291. Karlsson, K.-A., Samuelsson, B. E., and Steen, G. O., 1971, Lipid pattern and Na + -K +-dependent adenosine triphosphatase activity in the salt gland of duck before and after adaptation to hypertonic saline, J. Membr. Biol. 5:169.

    Article  CAS  Google Scholar 

  292. Zalc B., Helwig, J. J., Ghandour, M. S., and Sarlieve, L., 1978, Sulfatide in the kidney: How is this lipid involved in sodium chloride transport? FEBS Lett. 92:92.

    Article  PubMed  CAS  Google Scholar 

  293. Dietschy, J. M. and Siperstein, M. D., 1967, Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat, J. Lipid Res. 8:97.

    PubMed  CAS  Google Scholar 

  294. Edmond, J. and Popják, G., 1974, Transfer of carbon atoms from meva-lonate to n-fatty acids,J. Biol. Chem. 249:66.

    PubMed  CAS  Google Scholar 

  295. Edmond, J., Fogelman, A. M., and Popják, G., 1976, Mevalonate metabolism: Role of kidneys, Science 193:154.

    Article  PubMed  CAS  Google Scholar 

  296. Brunengraber, H., Weinstock, S. B., Story, D. L., and Kopito, R. R., 1981, Urinary clearance and metabolism of mevalonate by the isolated perfused rat kidney,J. Lipid Res. 22:916.

    PubMed  CAS  Google Scholar 

  297. Morel, F., 1981, Sites of hormone action in the mammalian nephron, Am. J. Physiol. 240:F159.

    PubMed  CAS  Google Scholar 

  298. Chabardes, D., Gagnan-Brunette, M., Imbert-Teboul, M., Gontcharevskaia, O., Montegut, M., Clique, A., and Morel, F., 1980, Adenylate cyclase responsiveness to hormones in various portions of the human nephron,J. Clin. Invest. 65:439.

    Article  PubMed  CAS  Google Scholar 

  299. Bailly, C., Imbert-Teboul, M., Chabardes, P., Hus-Citharel, A., Montegut, M., Clique, A., and Morel, F., 1980, The distal nephron of rat kidney: A target site for glucagon, Proc. Natl Acad. Sci. USA 77:3422.

    Article  PubMed  CAS  Google Scholar 

  300. Marver, D., Stewart, J., Funder, J. W., Feldman, D., and Edelman, I. S., 1974, Renal aldosterone receptors: Studies with [3H]aldosterone and the anti-mineralocorticoid [3H]spirolactone (SC-26304), Proc. Natl. Acad. Sci. USA 71:1431.

    Article  PubMed  CAS  Google Scholar 

  301. Edelman, I. S., 1981, Receptors and effectors in hormone action of the kidney, Am. J. Physiol. 241:F333.

    PubMed  CAS  Google Scholar 

  302. Scholer, D. W., Mishina, T., and Edelman, I. S., 1979, Distribution of aldosterone receptors in rat kidney cortical tubules enriched in proximal and distal segments, Am. J. Physiol. 237:F360.

    PubMed  CAS  Google Scholar 

  303. Farman, N., Vandewalle, A., and Bonvalet, J. P., 1981, Binding of aldosterone to cytoplasmic and nuclear receptors of the rabbit kidney, Am. J. Physiol. 240:C20.

    PubMed  CAS  Google Scholar 

  304. Vandewalle, A., Farman, N., Bencsath, P., and Bonvalet, J. P., 1981, Aldosterone binding along the rabbit nephron: An autoradiographic study on isolated tubules, Am. J. Physiol. 240:F172.

    PubMed  CAS  Google Scholar 

  305. Farman, N., Vandewalle, A., and Bonvalet, J. P., 1982, Aldosterone binding in isolated tubules. I. Biochemical determination in proximal and distal parts of the rabbit nephron, Am. J. Physiol. 242:F63.

    PubMed  CAS  Google Scholar 

  306. Farman, N., Vandewalle, A., and Bonvalet, J. P., 1982, Aldosterone binding in isolated tubules. II. An autoradiographic study of concentration dependency in the rabbit nephron, Am. J. Physiol. 242:F69.

    PubMed  CAS  Google Scholar 

  307. Doucet, A. and Katz, A. I., 1981, Mineralocorticoid receptors along the nephron: [3H]aldosterone binding in rabbit tubules, Am. J. Physiol. 241:F605.

    PubMed  CAS  Google Scholar 

  308. Marver, D. and Schwartz, M. J., 1980, Identification of mineralocorticoid target sites in the isolated rabbit cortical nephron, Proc. Natl. Acad. Sci. USA 77:3672.

    Article  PubMed  CAS  Google Scholar 

  309. Law, P. Y. and Edelman, I. S., 1978, Induction of citrate synthase by aldosterone in the rat kidney,J. Membr. Biol. 41:41.

    Article  PubMed  CAS  Google Scholar 

  310. Claire, M., Oblin, M-E., Steimer, J-L., Nakane, H., Misumi, J., Michaud, A., and Corvol, P., 1981, Effect of adrenalectomy and aldosterone on the modulation of mineralocorticoid receptors in rat kidney, J. Biol. Chem. 256:142.

    PubMed  CAS  Google Scholar 

  311. Mishina, T., Scholer, D. W., and Edelman, I. S., 1981, Glucocorticoid receptor in rat kidney cortical tubules enriched in proximal and distal segments, Am. J. Physiol. 240:F38.

    PubMed  CAS  Google Scholar 

  312. Schmidt, U., Schmid, J., Schmid, H., and Dubach, U.C., 1975, Sodium-potassium-activated ATPase. A possible target of aldosterone,J. Clin. Invest. 55:655.

    Article  PubMed  CAS  Google Scholar 

  313. Horster, M., Schmid, H., and Schmidt, U., 1980, Aldosterone in vitro restores nephron Na-K-ATPase in distal segments from adrenalectomized rabbits, Pflügers Arch. 384:203.

    Article  PubMed  CAS  Google Scholar 

  314. Garg, L. C., Knepper, M. A., and Burg, M. B., 1981, Mineralocorticoid effects on Na-K-ATPase in individual nephron segments, Am. J. Physiol. 240:F536.

    PubMed  CAS  Google Scholar 

  315. Doucet, A. and Katz, A. I., 1981, Short-term effect of aldosterone on Na-K-ATPase in single nephron segments, Am. J. Physiol. 241:F273.

    PubMed  CAS  Google Scholar 

  316. Petty, K. J., Kokko, J. P., and Marver, D., 1981, Secondary effect of aldosterone on Na-K-ATPase activity in the rabbit cortical collecting tubule, J. Clin. Invest. 68:1514.

    Article  PubMed  CAS  Google Scholar 

  317. Sinha, S. K., Rodriguez, H. J., Hogan, W. C., and Klahr, S., 1981, Mechanisms of activation of renal (Na+ + K +)-ATPase in the rat. Effects of acute and chronic administration of dexamethasone, Biochim. Biophys. Acta 641:20.

    Article  PubMed  CAS  Google Scholar 

  318. Aperia, A., Larsson, L., and Zetterström, R., 1981, Hormonal induction of Na-K-ATPase in developing proximal tubular cells, Am. J. Physiol. 241 :F356.

    PubMed  CAS  Google Scholar 

  319. Jorgensen, P. L., 1980, Sodium and potassium ion pump in kidney tubules, Physiol. Rev. 60:864.

    PubMed  CAS  Google Scholar 

  320. Edelman, I. S., Bogoroch, R., and Porter, G. A., 1963, On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis, Proc. Natl. Acad. Sci. USA 50:1169.

    Article  PubMed  CAS  Google Scholar 

  321. Goodman, D. B. P., 1981, The role of lipid metabolism in the response of the toad urinary bladder to aldosterone, Ann. N.Y. Acad. Sci. 372:30.

    Article  PubMed  CAS  Google Scholar 

  322. Goodman, D. B. P., Allen, J. E., and Rasmussen, H., 1971, Studies on the mechanism of action of aldosterone: Hormone induced changes in lipid metabolism, Biochemistry 10:3825.

    Article  PubMed  CAS  Google Scholar 

  323. Goodman, D. B. P., Wong, M., and Rasmussen, H., 1975, Aldosterone induced membrane phospholipid fatty acid metabolism in the toad urinary bladder, Biochemistry 14:2803.

    Article  PubMed  CAS  Google Scholar 

  324. Lien, E. L., Goodman, D. B. P., and Rasmussen, H., 1975, Effects of an acetyl-coenzyme A carboxylase inhibitor and a sodium-sparing diuretic on aldosterone-stimulated sodium transport, lipid synthesis and phospholipid fatty acid composition in the toad urinary bladder, Biochemistry 14:2749.

    Article  PubMed  CAS  Google Scholar 

  325. Lien, E. L., Goodman, D. B. P., and Rasmussen, H., 1976, Effects of inhibitors of protein and RNA synthesis on aldosterone-stimulated changes in phospholipid fatty acid metabolism in the toad urinary bladder, Biochim. Biophys. Acta 421:210.

    Article  PubMed  CAS  Google Scholar 

  326. Scott, W. N., Reich, I. M., and Goodman, D. B. P., 1979, Inhibition of fatty acid synthesis prevents the incorporation of aldosterone induced proteins into membranes,J. Biol. Chem. 254:4957.

    PubMed  CAS  Google Scholar 

  327. Kirsten, R., Nelson, K., Rüschendorf, U., Seger, W., Scholz, Th., Kirsten, E., 1977, Effects of aldosterone on lipid metabolism and renal oxygen consumption in the rat, Pflügers Arch. 368:189.

    Article  PubMed  CAS  Google Scholar 

  328. Kirsten, R., Nelson, K., Rabah, E., Rüschendorf, U., Scholz, Th., Stüve, J., and Ulbricht, R., 1978, Response of renal lipid metabolism to aldosterone, in: Biochemical Nephrology: Current Problems in Clinical Biochemistry: 8 (W. G. Guder and U. Schmidt, eds.), Huber, Bern, pp. 389–396.

    Google Scholar 

  329. Kirsten, R., Assmutat, J., Nelson, K., and Rüschendorf, U., 1980, Effect of aldosterone on incorporation of [3H]leucine into brush border membranes of rat kidney, Int. J. Biochem. 12:319.

    Article  PubMed  CAS  Google Scholar 

  330. Law, P. Y. and Edelman, I. S., 1978, Effect of aldosterone on incorporation of amino acids into renal medullary proteins,J. Membr. Biol. 41:15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Publishing Corporation

About this chapter

Cite this chapter

Schoolwerth, A.C., Little, J.R., Idell-Wenger, J.A. (1983). Renal Metabolism. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6722-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6722-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6724-0

  • Online ISBN: 978-1-4615-6722-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics