Skip to main content

Monopole Energy Loss and Detector Excitation Mechanisms

  • Chapter
Magnetic Monopoles

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 102))

Abstract

The prediction of the existence of supermassive magnetic monopoles1,2 in grand unification theories (GUTs),3,4 and of the copious production of these monopoles in the early universe,5 have led to a revived interest in the theory of the electromagnetic interactions of moving magnetic monopoles with matter. In particular, there is great interest in the rate at which monopoles lose energy in various types of astrophysical objects such as the earth and sun so that a determination of the likelihood of primordial monopoles being trapped by these objects can be made. There is even greater interest in the question of whether or not the quantity and quality of energy lost by magnetic monopoles in conventional types of particle detectors is adequate for their detection. In the pre-GUT era (roughly prior to 1979), there was little doubt about the answers to such questions. The monopole mass was expected to be sufficiently small so that acceleration of the monopoles to relativistic velocities by the Galactic magnetic fields was thought to be inevitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. t’Hooft, Nucl. Phys. B79, (1974).

    Google Scholar 

  2. A. Polyakov, JETP Lett. 20, 194 (1974).

    ADS  Google Scholar 

  3. H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

  4. H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

    Article  ADS  Google Scholar 

  5. J. P. Preskill, Phys. Rev. Lett. 43, 1365 (1979).

    Article  ADS  Google Scholar 

  6. H. J. D. Cole, Proc. Cambridge Philos. Soc. 47, 196 (1951).

    Article  ADS  MATH  Google Scholar 

  7. E. Bauer, Proc. Cambridge Philos. Soc. 47, 777 (1951).

    Article  ADS  MATH  Google Scholar 

  8. V. P. Martim’yanov and S. Kh. Khakimov, Sov. Phys. JETP 35, 20 (1972).

    ADS  Google Scholar 

  9. S. P. Ahlen, Phys. Rev. D 14, 2935 (1976).

    Article  ADS  Google Scholar 

  10. S. P. Ahlen, Phys. Rev. D 17, 229 (1978).

    Article  ADS  Google Scholar 

  11. Ü. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).

    Article  ADS  Google Scholar 

  12. S. P. Ahlen, Rev. Mod. Phys. 52, 121 (1980).

    Article  ADS  Google Scholar 

  13. S. P. Ahlen, G. Tarle and P. B. Price, Science 217, 1139 (1982).

    Article  ADS  Google Scholar 

  14. S. P. Ahlen and G. Tarie submitted to Phys. Rev. Lett. (1983).

    Google Scholar 

  15. H. H. Andersen and J. F. Ziegler, Hydrogen Stopping Powers andRanges in All Elements (Pergamon, New York) (1977).

    Google Scholar 

  16. E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).

    Article  ADS  Google Scholar 

  17. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 28, No. 8 (1954).

    Google Scholar 

  18. W. Brandt and J. Reinheimer, Can. J. Phys. 46, 607 (1968).

    Article  ADS  Google Scholar 

  19. P. M. Echenique, R. M. Nieminen and R. H. Ritchie, Solid State Commun. 37, 799 (1981).

    Article  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Quantum Mechanics 2nd edition (Pergamon Press, New York), p. 241 (1965).

    MATH  Google Scholar 

  21. W. E. Meyerhoff and K. Talubjerg, Ann. Rev. Nucl. Sci. 27, 279 (1977).

    Article  ADS  Google Scholar 

  22. J. D. Garcia, R. J. Fortner and T. M. Kavanaugh, Rev. Mod. Phys. 45, 111 (1973).

    Article  ADS  Google Scholar 

  23. D. R. Bates and W. R. McDonough, J. Phys. B 3, L83 (1970).

    Article  ADS  Google Scholar 

  24. D. R. Bates and W. R. McDonough, J. Phys. B 5, L107 (1972).

    Article  ADS  Google Scholar 

  25. H. A. Bethe and R. W. Jackiw, Intermediate Quantum Mechanics (Benjamin, New York), p. 326 (1968).

    Google Scholar 

  26. R. C. Der, T. M. Kavanagh, J. M. Khan, B. P. Curry and R. J. Fortner, Phys. Rev. Lett. 21, 1731 (1968).

    Article  ADS  Google Scholar 

  27. A. Mann and W. Brandt, Phys. Rev. B24, 4999 (1981).

    ADS  Google Scholar 

  28. L. Marton, L. B. Leder and H. Mendlowitz, Advances in Electronics and Electron Physics 7, 183 (1955).

    Article  Google Scholar 

  29. Y. Kazama, C. N. Yang and A. S. Goldhaber, Phys. Rev. D 25, 2287 (1977).

    Article  ADS  Google Scholar 

  30. J. Lindhard and M. Scharff, Phys. Rev. 124, 128 (1961).

    Article  ADS  Google Scholar 

  31. S. P. Ahlen and K. Kinoshita, Phys. Rev. D 26, 2347 (1982).

    Article  ADS  Google Scholar 

  32. J. M. Ziman, Principles of the Theory of Solids (Cambridge university Press), p. 190 (1964).

    MATH  Google Scholar 

  33. W. L. Schaich, private communication (1982).

    Google Scholar 

  34. G. W. Ford, Phys. Rev. D 26, 2519 (1982).

    Article  ADS  Google Scholar 

  35. S. P. Ahlen and G. Tarle, Phys. Rev. D 27, 688 (1983).

    Article  ADS  Google Scholar 

  36. S. H. Overbury, P. F. Dittner, S. Datz and R. S. Thoe, Rad. Eff. 42, 219 (1979).

    Google Scholar 

  37. J. Lindhard, M. Scharff and H. E. Schirftt, Kgl. Danske Videnskab. Selskab., Mat. Fys. Medd. 33, No. 14 (1963).

    Google Scholar 

  38. J. A. Harvey and N. W. Hill, Nucí. Instr. and Meth. 162, 507 (1979).

    Article  ADS  Google Scholar 

  39. J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, Oxford) (1964).

    Google Scholar 

  40. M. H. Salamon and S. P. Ahlen, Nucl. Instru. and Meth. 195, 557 (1982).

    Article  ADS  Google Scholar 

  41. W. V. R. Malkus, Rev. 83, 899 (1951).

    Article  MATH  Google Scholar 

  42. D. Sivers, Phys. Rev. D 2, 2048 (1970).

    Article  ADS  Google Scholar 

  43. C. Goebel, Proc. Monopole Seminars, Madison (1981).

    Google Scholar 

  44. S. Dimopoulos, S. L. Glashow, E. M. Purcell and F. Wilczek, Nature 298, 824 (1982).

    Article  ADS  Google Scholar 

  45. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).

    Article  ADS  Google Scholar 

  46. M. S. Turner, E. N. Parker and T. J. Bogdan, Phys. Rev. D 26, 1296 (1982).

    Article  ADS  Google Scholar 

  47. G. Tarie and S. P. Ahlen, to be published (1983).

    Google Scholar 

  48. S. D. Drell, N. M. Kroll, M. T. Mueller, S. J. Parke and M. A. Ruderman, Phys. Rev. Lett. 50, 644 (1983).

    Article  ADS  Google Scholar 

  49. J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York) (1970).

    Google Scholar 

  50. J. Kakinoki, K. Katoda, J. Hanawa and T. Ino, Acta. Crystallogr. 23, 171 (1960).

    Article  Google Scholar 

  51. E. N. Parker, Cosmical Magnetic Fields (Clarendon Press, Oxford), Chapter 20 (1979).

    Google Scholar 

  52. W. M. Kaula, An Introduction to Planetary Physics (Wiley, New York), p. 147 (1968).

    Google Scholar 

  53. G. A. Morton, H. M. Smith and R. Wasserman, IEEE Trans. Nucl. Sci. NS-14, No. 1, 443 (1967).

    Article  ADS  Google Scholar 

  54. D. S. Evans, Rev. Sci. Instr. 36, 375 (1965).

    Article  ADS  Google Scholar 

  55. B. Tatry, J. M. Bosqued and H. Reme, Nucl. Instr. and Meth. 69, 254 (1969).

    Article  ADS  Google Scholar 

  56. J. D. Ullman, Phys. Rev. Lett. 47, 289 (1981).

    Article  ADS  Google Scholar 

  57. J. A. Phipps, J. W. Boring and R. A. Lowry, Phys. Rev. A 135, 36 (1964).

    ADS  Google Scholar 

  58. J. A. Dennis, Rad. Eff. 8, 87 (1971).

    Article  ADS  Google Scholar 

  59. H. Grahmann and S. Kalbitzer, Nucl. Instru. and Meth. 132, 119 (1976).

    Article  ADS  Google Scholar 

  60. W. D. Wilson, L. G. Haggmark and J. P. Biersack, Phys. Rev. B 15, 2458 (1977).

    Article  ADS  Google Scholar 

  61. R. Hagstrom private communication (1982).

    Google Scholar 

  62. P. Mclntyre and R. Webb, Texas A & M university Preprint (1982).

    Google Scholar 

  63. F. D. Brooks, Nucl. Instr. and Meth. 162, 477 (1979).

    Article  ADS  Google Scholar 

  64. B. Barish, Proceedings of the Magnetic Monopole Workshop, Racine, Wisconsin, edited by P. Trower and R. Carrigan, to be published (1982).

    Google Scholar 

  65. C. W. Akerlof, Phys. Rev. D 26, 1116 (1982).

    Article  ADS  Google Scholar 

  66. C. W. Akerlof, submitted to Phys. Rev. D (rapid communications) (1982).

    Google Scholar 

  67. B. Cabrera, private communication (1982).

    Google Scholar 

  68. D. Morris, private communication (1982).

    Google Scholar 

  69. J. Gea-Baneloche, K. Cahill, D. Rossbach and A. Comtet, University of New Mexico Preprint, (June, 1982).

    Google Scholar 

  70. S. Geer and W. G. Scott, CERN Preprint (April, 1981).

    Google Scholar 

  71. J. S. Trefil, University of Virginia Preprint (1982).

    Google Scholar 

  72. K. Hayashi, Kinki University Preprint (February, 1982).

    Google Scholar 

  73. D. F. Bartlett, D. Soo, R. L. Fleischer, H. R. Hart, A. Mogro-Campero, Phys. Rev. D 24, 612 (1981).

    Article  ADS  Google Scholar 

  74. D. Ritson, Stanford University Preprint (1982).

    Google Scholar 

  75. K. Kinoshita and P. B. Price, Phys. Rev. D 24, 1707 (1981).

    Article  ADS  Google Scholar 

  76. K. Hayashi, Lett. Nuovo Cim. 33, 324 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Ahlen, S.P. (1983). Monopole Energy Loss and Detector Excitation Mechanisms. In: Carrigan, R.A., Trower, W.P. (eds) Magnetic Monopoles. NATO Advanced Science Institutes Series, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7370-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7370-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7372-2

  • Online ISBN: 978-1-4615-7370-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics