Skip to main content

Nonlinear Interactions of Electromagnetic Waves in an Active Medium and Their Possible Application to the Development of New Types of Lasers

  • Chapter
Nonlinear Optics

Part of the book series: The Lebedev Physics Institute Series ((LPIS,volume 43))

  • 156 Accesses

Abstract

Advances in laser technique now enable the production of light fields with a strength of 106-108 V/cm. In such fields the medium becomes nonlinear, i.e., the principle of superposition breaks down: Different waves interact with one another as they propagate; for instance, the propagation of waves of one frequency gives rise to waves of other frequencies, and so on. In quantum language such effects are described by multiphoton processes. Multiphoton processes are interactions of radiation with matter in which at least two photons are absorbed or emitted in each elementary act; the probability of such an act differs considerably from the product of the probabilities of individual one-photon processes. It should be noted that some multiphoton effects, such as Raman scattering, resonance fluorescence, etc., had been observed even before lasers were produced. Multiquantum processes were investigated theoretically in the early years of quantum mechanics; for instance, two-photon emission and absorption were examined as long ago as 1931 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. M. G. Goeppert-Mayer, Ann. Phys., 9:273 (1931).

    Article  Google Scholar 

  2. A. M. Boneh-Bruevich and V. A. Khodovoi, Usp. Fiz. Nauk, 85:3 (1965) [Sov. Phys. — Usp., 8:1 (1965)].

    Google Scholar 

  3. S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics [in Russian], Moscow (1964).

    Google Scholar 

  4. N. Bloembergen, Nonlinear Optics, W. A. Benjamin, New York (1965).

    Google Scholar 

  5. V. M. Fain and E. G. Yashchin, Zh. Éksp. Teor. Fiz., 46:695 (1964) [Sov. Phys. — JETP, 19:474 (1964)].

    Google Scholar 

  6. S. A. Akhmanov and R. V. Khokhlov, Zh. Éksp. Teor. Fiz., 43:351 (1962) [Sov. Phys. — JETP, 16:61 (1963)].

    Google Scholar 

  7. N. Kroll, Phys. Rev., 127:1207 (1962).

    Article  ADS  Google Scholar 

  8. A. M. Prokhorov and A. S. Selivanenko, Author’s Certificate B 459, December 24, 1963.

    Google Scholar 

  9. B. P. Kirsanov and A. S. Selivanenko, Opt. Spektrosk., 23:455 (1967) [Opt. Spectrosc, 23:242 (1967)].

    Google Scholar 

  10. S. A. Akhmanov, A. I. Kovrigin, A. S. Peskarskas, V. V. Fadeev, and R. V. Khokhlov, ZhÉTF Pis. Red., 2:300 (1965).

    ADS  Google Scholar 

  11. W. E. Lamb, Phys. Rev., 134:1431 (1963).

    Google Scholar 

  12. Yu. G. Khronopulo, Izv. Vuzov. Radiofizika, 7:674 (1964).

    Google Scholar 

  13. I. V. Voropaev and A. N. Oraevskii (in press).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshits, Quantum Mechanics [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  15. T. N. Il’inova, Vestn. MGU, seriya fiz. astron., 1:79; 5:39 (1966).

    Google Scholar 

  16. G. L. Gurevich and Yu. G. Khronopulo, Izv. vuzov. Radiofizika, 8:493 (1965).

    Google Scholar 

  17. P. P. Sorokin and N. N. Braslau, IBM J., 8:177 (1964).

    Article  Google Scholar 

  18. P. L. Garwin, IBM J., 8:338 (1964).

    Article  Google Scholar 

  19. W. Heitler, The Quantum Theory of Radiation, Clarendon Press, Oxford (1954).

    MATH  Google Scholar 

  20. A. I. Akbiezer and V. B. Berestetskii, Quantum Electrodynamics [in Russian], Gostekhizdat, Moscow (1953)„

    Google Scholar 

  21. M. Lipeles, P. Nowick, and N. Tolk, Phys. Rev. Lett., 15:690 (1965).

    Article  ADS  Google Scholar 

  22. A. S. Selivanenko, Opt. Spektrosk., 21:100 (1966) [Opt. Spectrosc., 21:54 (1966)].

    Google Scholar 

  23. F. V. Bunkin, Zh. Éksp. Teor. Fiz., 50:1685 (1966) [Sov. Phys. — JETP, 23:1121 (1966)].

    Google Scholar 

  24. S. G. Rautian and A. S. Selivanenko (in press).

    Google Scholar 

  25. A. P. Veduta, Candidate’s Dissertation, FIAN (1967).

    Google Scholar 

  26. V. M. Fain, Zh. Éksp. Teor. Fiz. (in press).

    Google Scholar 

  27. E. D. Trifonov and A. S. Troshin, Vestn. LGU. Fizika, khimiya, No. 4, p. 69 (1966).

    Google Scholar 

  28. V. M. Fain and Ya. L Khanin, Quantum Radiophysics [in Russian], Izd. Sovetskoe Radio, Moscow (1965).

    Google Scholar 

  29. B. P. Kirsanov, A. S. Selivanenko, and V. N. Tsitovich, Paper read at Symposium on Nonlinear Optics in Novosibirsk [in Russian] (1966).

    Google Scholar 

  30. V. S. Pugaehev, Theory of Random Functions [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Consultants Bureau, New York

About this chapter

Cite this chapter

Kirsanov, B.P. (1970). Nonlinear Interactions of Electromagnetic Waves in an Active Medium and Their Possible Application to the Development of New Types of Lasers. In: Skobel’tsyn, D.V. (eds) Nonlinear Optics. The Lebedev Physics Institute Series, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7519-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7519-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7521-4

  • Online ISBN: 978-1-4615-7519-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics