Skip to main content

Preclinical Models for High-Dose Therapy

  • Chapter
Anticancer Drug Development Guide

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The scientific study of cancer therapy relevant to the high-dose setting has required the development of preclinical models that go beyond the conventional dose end points of increase in life-span and tumor growth delay. High-dose therapy can be modeled using the tumor cell survival assay that allows tumor-bearing animals to be treated with “supralethal” doses of anticancer treatments with a quantitative measure of tumor cell killing. Furthermore, a stem-cell support regimen in mice has recently been developed in a murine system allowing observation of regression and regrowth of tumors after high-dose therapy. The ability to determine whether combination therapies, especially chemotherapy combinations, retain increasing efficacy in the high-dose setting is critical to the development of new treatment regimens and is an issue best addressed in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill RP. Excision assays. In: Kallman RF, ed. Rodent Tumor Models in Experimental Cancer Therapy. New York: Pergamon. 1987: 67–75.

    Google Scholar 

  2. Hewitt HB, Wilson CW. A survival curve for mammalian leukaemia cells irradiated In vivo. Br J Cancer 1959; 13: 69–75.

    Article  PubMed  CAS  Google Scholar 

  3. Rockwell SC, Kallman RF, Fajardo LF. Characteristics of serially transplanted mouse mam-mary tumor and its tissue-culture-adapted derivative. J Natl Cancer Inst 1972; 49: 735–747.

    PubMed  CAS  Google Scholar 

  4. Courtenay VD. A soft agar colony assay for Lewis lung tumour and B16 melanoma taken directly from the mouse. Br J Cancer 1976; 34: 39–45.

    Article  PubMed  CAS  Google Scholar 

  5. Hill RP. An appraisal of in vivo assays of excised tumours. Br J Cancer 1980; 41 (suppl IV): 230–239.

    Google Scholar 

  6. Courtenay VD, Smith IE, Peckham MJ, Steel GG. In vitro and in vivo radiosensitivity of human tumour cells obtained from a pancreatic carcinoma xenograft. Nature 1976; 263: 771, 772.

    Google Scholar 

  7. Jung H. Radiation effects on tumours. In: Broerse JJ, Barendsen GW, Kai HB, van der Kogel AJ, eds. Radiation Research. Amsterdam: M. Nijhoff. 1983: 427–434.

    Google Scholar 

  8. Kelley SD, Kallman RF, Rapacchietta D, Franko AJ. The effect of X-irradiation on cell loss in five solid murine tumors, as determined by the 125IUdR method. Cell Tissue Kinetics 1981; 14: 611–624.

    CAS  Google Scholar 

  9. Twentyman PR, Brown JM, Gray JW, Franko AJ, Scoles MA, Kallman RF. A new mouse tumor model (RIF-1) for a comparison of endpoint studies. J Natl Cancer Inst 1980; 64: 595–604.

    PubMed  CAS  Google Scholar 

  10. Teicher BA, Rose CM. Perfluorochemical emulsions can increase tumor radiosensitivity. Science (Wash DC) 1984; 223: 934–936.

    Article  CAS  Google Scholar 

  11. Teicher BA, Herman TS, Holden SA, Wang Y, Pfeffer MR, Crawford JM, Frei III E. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247: 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  12. Teicher BA, Chatterjee D, Liu J-T, Holden SA, Ara G. Protection of bone marrow CFU-GM in mice-bearing in vivo alkylating agent resistant EMT-6 tumors. Cancer Chemother Pharmacol 1993; 32: 315–319.

    Article  PubMed  CAS  Google Scholar 

  13. Chatterjee D, Liu CT-T, Northey D, Teicher BA. Molecular characterization of the in vivo alkylating agent resistant murine EMT-6 mammary carcinoma tumors. Cancer Chemother Pharmacol 1995; 35: 423–431.

    Article  PubMed  CAS  Google Scholar 

  14. Chao NJ, Blume KG. Bone marrow transplantation part II—autologous. West J Med 1990; 152: 46–51.

    Google Scholar 

  15. Gulati S, Yahalow J, Portlock C. Autologous bone marrow transplantation. Curr Probl Cancer 1991; 15: 5–56.

    Article  Google Scholar 

  16. Williams SF. Application of peripheral blood progenitors to dose-intensive therapy of breast cancer. Breast Cancer Res Treatment 1993; 26: 25–29.

    Article  Google Scholar 

  17. Crown J, Wassherheit C, Hakes T, Fennelly D, Reich L, Moore M, Schneider J. Rapid delivery of multiple high-dose chemotherapy courses with granulocyte colony-stimulating factor and peripheral blood-derived hematopoietic progenitor cells. J Natl Cancer Inst 1992; 84: 1935–1936.

    Article  PubMed  CAS  Google Scholar 

  18. Koenigsdmann M, Topp MS, Thiel E, Berdel WW. Recombinant human granulocyte colony- stimulating factor (rhG-CSF) does not stimulate in vivo tumour growth of the human colon cancer cell line HTB 38 which is responsive in vitro. Int J Oncol 1993; 3: 1057–1059.

    Google Scholar 

  19. Knox SJ, Fowler S, Marquez C, Hoppe RT. Effect of filgrastim (G-CSF) in Hodgkin’s disease patients treated with radiation therapy. Int J Radiat Oncol Biol Phys 1993; 28: 445–450.

    Article  Google Scholar 

  20. Johnson CS. Interleukin-1: therapeutic potential for solid tumors. Cancer Invest 1993; 11: 600–608.

    Article  PubMed  CAS  Google Scholar 

  21. Kennedy MJ, David J, Passos-Coelho J, Noga SJ, Huelskamp A, Ohly K, Davidson NE. Administration of human recombinant granulocyte colony-stimulating factor (Filgrastin) accelerates granulocyte recovery following high-dose chemotherapy and autologous marrow transplantation with 4-hydroperoxycyclophosphamide-purged marrow in women with meta-static breast cancer. Cancer Res 1993; 53: 5424–5428.

    PubMed  CAS  Google Scholar 

  22. Neta R, Douches S, Oppenheim JJ. Interleukin 1 is a radioprotector. J Immunol 1986; 136: 2483–2485.

    PubMed  CAS  Google Scholar 

  23. Neta R. Oppenheim J J, Douches SD. Interdependence of the radioprotective effects of human recombinant interleukin la, tumor necrosis factor a, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol 1988; 140: 108–111.

    Google Scholar 

  24. Moore MAS, Warren DJ. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorour- acil treatment of mice. Proc Natl Acad Sci USA 1987; 84: 7134–7138.

    Article  PubMed  CAS  Google Scholar 

  25. Moreb J, Zucali JR, Gross MA, Weiner RS. Protective effects of IL-1 on human hematopoietic progenitor cells treated in vitro with 4-hydroperoxycyclophosphamide. J Immunol 1989; 142: 1937–1942.

    PubMed  CAS  Google Scholar 

  26. Castelli MP, Black PL, Schneider M, Pennington R, Abe F, Talmadge JE. Protective, restorative, and therapeutic properties of recombinant human IL-1 in rodent models. J Immunol 1988; 140: 3830–3837.

    PubMed  CAS  Google Scholar 

  27. Damia G, Komschlies KL, Futami H, Back T, Gruys ME, Longo DL, Keller JR, Ruscetti FW, Wiltrout RH. Prevention of acute chemotherapy-induced death in mice by recombinant human interleukin 1: protection from hematological and nonhematological toxicities. Cancer Res 1992; 52: 4082–4089.

    PubMed  CAS  Google Scholar 

  28. Lynch DH, Rubin AS, Miller RE, Williams DE. Protective effects of recombinant human interleukin-la in doxorubicin-treated normal and tumor-bearing mice. Cancer Res 1993; 53: 1565–1570.

    PubMed  CAS  Google Scholar 

  29. Naparstek E, Ohana M, Greenberger JS, Slavin S. Continuous intravenous administration of rmGM-CSF enhances immune as well as hematopoietic reconstitution following syngeneic bone marrow transplantation in mice. Exp Hem 1993; 21: 131–137.

    CAS  Google Scholar 

  30. Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 1990; 65: 2153–2158.

    Google Scholar 

  31. Neben S, Marcus K, Mauch P. Mobilization of hematopoietic stem and progenitor cell sub- populations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood 1993; 81: 1960–1967.

    PubMed  CAS  Google Scholar 

  32. Craddock CF, Apperley JF, Wright EG, Healy LE, Bennett CA, Evans M, Grimsley PG, Gordon MY. Circulating stem cells in mice treated with cyclophosphamide. Blood 1992; 80: 264–269.

    PubMed  CAS  Google Scholar 

  33. Steel GG, Peckman MJ. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Oncol Biol Phys 1979; 15: 85–91.

    Article  Google Scholar 

  34. Berenbaum MC. Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp. Immunol 1977; 28: 1–18.

    Google Scholar 

  35. Dewey WC, Stone LE, Miller HH, Giblak RE. Radiosensitization with 5-bromodeoxyuridine of Chinese hamster cells x-irradiated during different phases of the cell cycle. Radiat Res 1971; 47: 672–688.

    Article  PubMed  CAS  Google Scholar 

  36. Deen DF, Williams ME. Isobologram analysis of x-ray-BCNU interactions in vitro. Radiat Res 1979; 79: 483–491.

    Article  PubMed  CAS  Google Scholar 

  37. Frei E III. Curative cancer chemotherapy. Cancer Res 1985; 45: 6523–6537.

    PubMed  Google Scholar 

  38. Frei E III, Canellos GP. Dose, a critical factor in cancer chemotherapy. Am J Med 1980; 69: 585–594.

    Article  PubMed  Google Scholar 

  39. Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents- XIII. On the criteria and kinetics associated with curability of experimental leukemia. Cancer Chemother Rep 1964; 15: 1–111.

    Google Scholar 

  40. Skipper HE. Combination therapy: some concepts and results. Chemother Rep 1974; 4: 137–145.

    CAS  Google Scholar 

  41. Blum R, Frei E III. Combination chemotherapy: methods in cancer research. Cancer Res 1979; 17: 215–257.

    Google Scholar 

  42. Frei E III. Combination cancer therapy: presidential address. Cancer Res 1972; 32: 2593–2607.

    PubMed  Google Scholar 

  43. Frei E III, Karon M, Levin RH. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 1965; 26: 642–656.

    PubMed  Google Scholar 

  44. Holland JF. Breaking the cure barrier. J Clin Oncol 1983; 1: 75–90.

    PubMed  CAS  Google Scholar 

  45. Alberts DS, Green SJ, Hannigan EV, OToole R, Mason-Liddll N, Surwit E, Stock-Novack D, Goldberg R, Malviya V, Nahhas W. Improved efficacy of carboplatin plus cyclophosphamide versus cisplatin plus cyclophosphamide: preliminary report by the Southeast Oncology Group of a phase III randomized trial in stages III and IV suboptimal ovarian cancer. Proc Am Soc Clin Oncol 1989; 8: 151.

    Google Scholar 

  46. Carney DN, Teeling M. Carboplatin plus cyclophosphamide for epithelial ovarian carcinoma. In: Bunn PA, Canetta R, Ozols RF, Rozencweig M, eds. Carboplatin (JM-8): Current Perspectives and Future Directions. Philadelphia: Harcourt, Brace, Jovanovich. 1990: 125–132.

    Google Scholar 

  47. Eisenhauer EA, Swenerton KD, Sturgeon JF, Fine S, O’Reilly SE. Phase II study of carboplatin in patients with ovarian carcinoma: a National Cancer Institute of Canada Clinical Trials Group study. Cancer Treatment Rep 1986; 70: 1195–1198.

    CAS  Google Scholar 

  48. ten Bokkel Huinink WW, Rodenhuis S, Simonetti G, Dubbelman R, Franklin H, Dalesio O, Vermorken JB, McVie JG. Studies with carboplatin in ovarian cancer: experience of the Netherlands Cancer Institute and GCCG of the European Organization for Research and Treatment of Cancer. In: Bunn PA, Canetta R, Ozols RF, Rozencweig M, eds. Carboplatin (JM-8): Current Perspectives and Future Directions. Philadelphia: Harcourt, Brace, Jovanich. 1990: 165–174.

    Google Scholar 

  49. Kavanagh JJ. Carboplatin in refractory epithelial ovarian cancer. In: Bunn PA, Canetta R, Ozols RF, Rozencweig M,Carboplatin (JM-8): Current Perspectives and Future Directions. Philadelphia: Harcourt, Brace, Jovanovich. 1990: 141–146.

    Google Scholar 

  50. Rozencweig M, Martin A, Beltangady M, Bragman K, Goodlow J, Wiltshaw E, Calvert H, Mangioni C, Pecorelli S, Bolis G, Rocker I, Adams M, Canetta R. In: Bunn PA, Canetta R, Ozols RF, Rozencweig M,Carboplatin (JM-8): Current Perspectives and Future Directions. Philadelphia: Harcourt, Brace, Jovanich. 1990: 175–186.

    Google Scholar 

  51. Speyer JL, Richards D, Beller U, Colombo N, Sorich J, Wernz J, Höchster H, Porges R, Muggia F, Canetta R, Beckman EM. Trials of intraperitoneal carboplatin in patients with refractory ovarian cancer. In: Bunn PA, Canella R, Ozols RF, Rozencweig M, eds. Carboplatin (JM-8): Current Perspectives and Future Directions. Philadelphia: Harcourt, Brace, Jovanovich. 1990: 153–162.

    Google Scholar 

  52. Coleman NC. Hypoxic cell radiosensitizers: expectations and progress in drug development. Int J Radiat Oncol Biol Phys 1985; 11: 323–329.

    Article  PubMed  CAS  Google Scholar 

  53. Teicher BA, Herman TS, Holden SA. Effect of pH oxygenation and temperature on the cytotoxicity and radiosensitization by etanidazole. Int J Radiat Oncol Biol Phy 1991; 20: 723–731.

    Article  CAS  Google Scholar 

  54. Herman TS, Teicher BA, Holden SA, Pfeffer MR, Jones SM. Addition of 2-nitroimidazole radiosensitizers to trimodality therapy fcfc-diamminedichloroplatinum II/hyperthermia/radiation) in the murine FSallC fibrosarcoma. Cancer Res 1990; 50: 2734–2740.

    PubMed  CAS  Google Scholar 

  55. Teicher BA, Herman TS, Holden SA, Jones SM. Addition of misonidazole, etanidazole, or hyperthermia to treatment with Fluosol-DA/carbogen/radiation. J Natl Cancer Inst 1989; 12: 929–934.

    Article  Google Scholar 

  56. Siemann DW. Modification of chemotherapy by nitroimidazoles. Int J Radia Oncol Bio Phys 1984; 10: 1585–1594.

    Article  CAS  Google Scholar 

  57. Franko AJ. Misonidazole and other hypoxia markers. Metabolism and applications. Int J Radiat Oncol Biol Phy 1986; 12: 1195–1202.

    Google Scholar 

  58. Laderoute KR, Eryavec E, McClelland RA, Rauth AM. The production of strand breaks in DNA in the presence of the hydroxylamine of SR-2508 (l-[N-(2-hydroxyethyl)acetamido]-2- nitroimidazole). Int j Radiat Oncol Biol Phys 1986; 12: 1215–1218.

    Article  PubMed  CAS  Google Scholar 

  59. McNally NJ. Enhancement of chemotherapy agents. Int J Radiat Oncol Biol Phys 1982; 8: 593–598.

    Article  PubMed  CAS  Google Scholar 

  60. Roizen-Towle L, Hall EJ, Piro JP. Oxygen dependence for chemosensitization by misonidazole. Br J Cancer 1986; 54: 919–924.

    Article  Google Scholar 

  61. Teicher BA, Pfeffer MR, Alvarez Sotomayor E, Herman TS. DNA cross-linking and pharmacokinetic parameters in target tissues with cis-diamminedichloroplatinum(II) and etanidazole with or without hyperthermia. Int J Hyperthermia 1991; 7: 773–784.

    Article  PubMed  CAS  Google Scholar 

  62. Teicher BA, Holden SA, Jones SM, Eder JP, Herman TS. Influence of scheduling on two-drug combinations of alkylating agents in vivo. Cancer Chemother Pharmacol 1989; 25: 161–166.

    Article  PubMed  CAS  Google Scholar 

  63. Teicher BA, Herman TS, Shulman L, Bubley G, Coleman CN, Frei E III. Combination of etanidazole with cyclophosphamide and platinum complexes. Cancer Chemother Pharmacol 1991; 28: 153–158.

    Article  PubMed  CAS  Google Scholar 

  64. DeMartino C, Battelli T, Paggi MG. Effects of lonidamine on murine and human tumor cells in vitro. Oncology 1984; 41: 15–29.

    Article  CAS  Google Scholar 

  65. DeMartino C, Malorni W, Accinni L. Cell membrane changes induced by lonidamine in human erythrocytes and T lymphocytes, and Ehrlich ascites tumor cells. Exp Mol Pathol 1987; 46: 15–30.

    Article  CAS  Google Scholar 

  66. Floridi A, Lehninger AL. Action of the antitumor and antispermatogenic agent lonidamine on electron transport in Ehrlich ascites tumor mitochondria. Arch Biochem Biophys 1983; 226: 73–83.

    Article  PubMed  CAS  Google Scholar 

  67. Floridi A, Paggi MG, D’Atri S. Effect of lonidamine on the energy metabolism of Ehrlich ascites tumor cells. Cancer Res 1981; 41: 4661–4666.

    PubMed  CAS  Google Scholar 

  68. Floridi A, Paggi MG, Marcante ML. Lonidamine a selective inhibitor of aerobic glycolysis of murine tumor cells. J Natl Cancer Inst 1981; 66: 497–499.

    PubMed  CAS  Google Scholar 

  69. Floridi A, Bagnato A, Bianchi C. Kinetics of inhibition of mitochondrial respiration by antineoplastic agent lonidamine. J Exp Clin Cancer Res 1986; 5: 273–280.

    CAS  Google Scholar 

  70. Szekely JG, Lobreau AU, Delaney S. Morphological effects of lonidamine on two human- tumor cell culture lines. Microscopy 1989; 3: 681–693.

    CAS  Google Scholar 

  71. Hahn GM, vanKersen I, Silvestrini B. Inhibition of the recovery from potentially lethal damage of lonidamine. Br J Cancer 1984; 50: 657–660.

    Article  PubMed  CAS  Google Scholar 

  72. Kim JH, Alfieri A, Kim SH. Radiosensitization of Meth-A fibrosarcoma in mice by lonidamine. Oncology 1984; 41: 36–38.

    Article  PubMed  CAS  Google Scholar 

  73. Kim JH, Kim SH, Alfieri A. Lonidamine: a hyperthermic sensitizer of HeLa cells in culture and of the Meth-A tumor in vivo. Oncology 1984; 41: 30–35.

    Article  PubMed  CAS  Google Scholar 

  74. Kim JH, Alfieri AA, Kim SH. Potentiation of radiation effects on two murine tumors by loni-damine. Cancer Res 1986; 46: 1120–1123.

    PubMed  CAS  Google Scholar 

  75. Rosbe KW, Brann TW, Holden SA. Effect of lonidamine on the cytotoxicity of four alkylating agents in vitro. Cancer Chemother Pharmacol 1989; 25: 32–36.

    Article  PubMed  CAS  Google Scholar 

  76. Zupi G, Greco C, Laudino N. In vitro and in vivo potentiation by lonidamine of the antitumor effect of adriamycin. Anticancer Res 1986; 6: 1245–1250.

    PubMed  CAS  Google Scholar 

  77. Teicher BA, Herman TS, Holden SA, Epelbaum R, Liu S, Frei E III. Lonidamine as a modulator of alkylating agent activity in vitro and in vivo. Cancer Res 1991; 51: 780–784.

    PubMed  CAS  Google Scholar 

  78. Ward A, Clissold SP. Pentoxifylline: a review of its pharmacodynamic properties, and its therapeutic efficacy. Drugs 1987; 34: 50–97.

    Article  PubMed  CAS  Google Scholar 

  79. Ehrly AM. The effect of pentoxifylline on the flow properties of human blood. Curr Med Res Opinion 1978; 5: 608–613.

    Article  CAS  Google Scholar 

  80. Ehrly AM. The effect of pentoxifylline on the deformability of erythrocytes and on the muscular oxygen pressure in patients with chronic arterial disease. J Med 1979; 10: 331.

    PubMed  CAS  Google Scholar 

  81. Aviado DM, Porter JM. Pentoxifylline: a new drug for treatment of intermittent claudication. Pharmacotherapy 1984; 6: 297.

    Google Scholar 

  82. Perego MS, Sergio G, Artale F, Giunti P, Danese C. Haemorheological improvement by pentoxifylline in patients with peripheral arterial occlusive disease. Curr Med Res Opinion 1986; 10: 135.

    Article  CAS  Google Scholar 

  83. Poggesi L, Scarti L, Boddi M, Masotti G, Serneri GG. Pentoxifylline treatment in patients with occlusive peripheral vascular disease. Angiology 1985; 36: 268.

    Article  Google Scholar 

  84. Waldren CA, Rasko I. Caffeine enhancement of x-ray killing in cultured human and rodent cells. Radiat Res 1978; 73: 95–110.

    Article  PubMed  CAS  Google Scholar 

  85. Busse PM, Bose SK, Jones RW, Tolmach LJ. The action of caffeine on X-irradiated HeLa cells: II. Synergistic lethality. Radiat Res 1977; 71: 666.

    Article  PubMed  CAS  Google Scholar 

  86. Tolmach LJ, Busse PM. The action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations. Radiat Res 1980; 82: 374–392.

    Article  PubMed  CAS  Google Scholar 

  87. Busse PM, Bose SK, Jones RW, Tolmach LJ. The action of caffeine on X-irradiated HeLa cells. III. Enhancement of x-ray-induced killing during G2 arrest. Radiat Res 1978; 76: 292–307.

    Article  PubMed  CAS  Google Scholar 

  88. Painter RB, Young BR. Radiosensitivity in ataxiatelangiectasia: a new explanation. Proc Natl Acad Sci USA 1980; 77: 7315–7317.

    Article  PubMed  CAS  Google Scholar 

  89. Tolmach LJ, Duncan PG, Beethan KL. The action of caffeine on x-irradiated HeLa cells. IX. Hypothermic effects. Radiat Res 1990; 122: 280–287.

    Article  PubMed  CAS  Google Scholar 

  90. Fraval HNA, Roberts J J. Effects of cis-platinum(II) diamine dichloride on survival and the rate of DNA synthesis in synchronously growing Chinese hamster V79-379A cells in the absence and presence of caffeine inhibited post replication repair: evidence for an inducible repair mechanism. Chem Biol Interact 1978; 23: 99.

    Article  PubMed  CAS  Google Scholar 

  91. Fraval HNA, Roberts J J. Effects of c/5-platinum(II) diamine dichloride on survival and the rate of DNA synthesis in synchronously growing HeLa cells in the absence and presence of caffeine. Chem Biol Interact 1978; 23: 111.

    Article  PubMed  CAS  Google Scholar 

  92. Evenson DP, Baer RK, Jost LK, Gesch RW. Toxicity of thiotepa on mouse spermatogenesis as determined by dual-parameter flow cytometry. Toxicol Appl Pharmacol 1986; 82: 151.

    Article  PubMed  CAS  Google Scholar 

  93. Lau CC, Pardee AB. Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci USA 1982; 79: 2942–2946.

    Article  PubMed  CAS  Google Scholar 

  94. Hansson K, Kihlman BA, Tanzarella C, Palitti F. Influence of caffeine and 3-aminobenzamide in G2 on the frequency of chromosomal aberrations induced by thiotepa, mitomycin C and N-methyl-N-nitro-N′ = nitrosoguanidine in human lymphocytes. Mutat Res 1984; 126: 251.

    Article  PubMed  CAS  Google Scholar 

  95. Kihlman BA, Anderson HC. Synergistic enhancement of the frequency of chromatid aberrations in cultered human lymphocytes by combinations of inhibitors of DNA repair. Mutat Res 1985; 150: 313.

    Article  PubMed  CAS  Google Scholar 

  96. Fingert HJ, Chang JD, Pardee AB. Cytotoxic, cell cycle, and chromosomal effects of methyl- xanthines in human tumor cells treated with alkylating agents. Cancer Res 1986; 46: 2463–2467.

    PubMed  CAS  Google Scholar 

  97. Fingert HJ, Pu AT, Chen Z, Googe PB, Alley MC, Pardee AB. In vivo and in vitro enhanced antitumor effects by pentoxifylline in human cancer cells treated with thiotepa. Int J Radiat Oncol Biol Phys 1988; 17: 101–107.

    Google Scholar 

  98. Rose WC, Trader MW, Dykes DJ, Laster WR Jr, Schael FM Jr. Therapeutic potentiation of nitrosoureas using chlorpromazine and caffeine in the treatment of murine tumors. Cancer Treatment Rep 1978; 62: 2085–2093.

    CAS  Google Scholar 

  99. Kyriazis AP, Kyriazia AA, Yagoda A. Enhanced therapeutic effect of cw-diamminecichloro- platinum(II) against nude mouse grown human pancreatic adenocarcinoma when combined with U-b-D-arabiofuranosylcytosine and caffeine. Cancer Res 1985; 45: 6083–6087.

    PubMed  CAS  Google Scholar 

  100. Allen TE, Aliano NA, Cowan RJ. Amplification of the antitumor activity of phleomycins and bleomycins in rats and mice by caffeine. Cancer Res 1985; 45: 2516–2521.

    PubMed  CAS  Google Scholar 

  101. Osieka R, Glatte P, Pannenbacker R, Schmidt CG. Enhancement of semustine-induced cytotoxicity by chlorpromazine and caffeine in a human melanoma xenograft. Cancer Treatment Rep 1986; 70: 1167–1171.

    CAS  Google Scholar 

  102. Dion MD, Hussey DH, Oxborne JW. The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice. Int J Radiat Oncol Biol Phys 1989; 17: 101–107.

    Article  PubMed  CAS  Google Scholar 

  103. Schror RH. Antithrombotic potential of pentoxifylline—a hemmorheologically active drug. Angiology 1985; 36: 387–398.

    Article  Google Scholar 

  104. Bessler H, Gilgal R, Diadetti M, Zahavi I. Effect of pentoxifylline on the phagocytic activity, cAMP levels and superoxide onion production by monocytes and polymorphonuclear cells. J Leuk Biol 1986; 40: 747 - 754.

    CAS  Google Scholar 

  105. Strieter RM, Remick DG, Ward PA, Spengler RN, Lynch JP III, Kunkel SL. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochim Biophys Res Commun 1988; 155: 1230–1236.

    Article  CAS  Google Scholar 

  106. Dezube BJ, Fridovich-Keil JL, Bouvard I, Lange RF, Pardee AB. Pentoxifylline and well- being in patients with cancer. Lancet 1990; 335: 662.

    Article  PubMed  CAS  Google Scholar 

  107. Knudsen PJ, Dinarello CA, Strom TB. Prostaglandins posttranscriptionally inhibit monocyte expression of interleukin I activity by increasing intracellular cyclic adenosine monophosphate. J Immunol 1986; 137: 3189–3194.

    PubMed  CAS  Google Scholar 

  108. Teicher BA, Holden SA, Herman TS, Epelbaum R, Pardee AB, Dezube B. Effect of pentoxi-fylline as a modulator of alkylating agent activity in vitro and in vivo. Anticancer Res 1991; 11: 153–158.

    Google Scholar 

  109. Dezube BJ, Eder JP, Pardee AB. Phase I trial of escalating pentoxifylline dose with constant dose tiotepa. Cancer Res 1990; 50: 6806–6810.

    PubMed  CAS  Google Scholar 

  110. Hasegawa T, Rhee JG, Levitt SH, Song CW. Increase in tumor p02 by perfluorochemicals and carbogen. Int J Radiat Oncol Biol Phys 1987; 13: 569–574.

    Article  PubMed  CAS  Google Scholar 

  111. Rockwell S. Use of perfluorochemical emulsion to improve oxygenation in a solid tumor. Int J Radiat Oncol Biol Phys 1985; 11: 97–103.

    Article  PubMed  CAS  Google Scholar 

  112. Song CW, Lee I, Hasegawa T, Rhee JG, Levitt SH. Increase in p02 and radiosensitivity of tumors by Fluosol-DA (20Vo) and carbogen. Cancer Res 1987; 47: 442 - 446.

    PubMed  CAS  Google Scholar 

  113. Teicher BA, Rose CM. Sensitization of solid mouse tumor to X-ray treatment by oxygen-carry- ing perfluorochemical emulsion. Cancer Res 1984; 44: 4285–4288.

    PubMed  CAS  Google Scholar 

  114. Teicher BA, Rose CM. Effect of dose and scheduling on growth delay of the Lewis lung car-cinoma produced by the perfluorochemical emulsion, Fluosol-DA. Int J Radiat Oncol Biol Phys 1986; 12: 1311–1313.

    Article  PubMed  CAS  Google Scholar 

  115. Zhang WL, Pence D, Patten M. Enhancement of tumor response to radiation by Fluosol-DA. Int J Radiat Oncol Biol Phys 1984; 10: 172–175.

    Article  Google Scholar 

  116. Lustig R, Mclntosh-Lowe NL, Rose C, Haas J, Krasnow S, Spaulding M, Prosnitz L. Phase I/II study of Fluosol-DA and 100% oxygen breathing as an adjuvant to radiation in the treatment of advanced squamous cell tumors of the head and neck. Int J Radiat Oncol Biol Phys 1989; 16: 1587–1594.

    Google Scholar 

  117. Rose CM, Lustig R, Mcintosh N, Teicher BA. A clinical trial of Fluosol-DA® 20% in advanced squamous cell carcinoma of the head and neck. Int J Rad Oncol Biol Phys 1986; 12: 1325–1327.

    Article  CAS  Google Scholar 

  118. Teicher BA, Lazo JS, Sartorelli AC. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 1981; 41: 73–81.

    PubMed  CAS  Google Scholar 

  119. Teicher BA, Holden SA, Al-Achi A, Herman TS. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in FSallC murine fibrosarcoma. Cancer Res 1990; 50: 3339–3344.

    PubMed  CAS  Google Scholar 

  120. Teicher BA, Mclntosh-Lowe NL, Rose CM. Effect of various oxygenation conditions and Fluosol-DA on cancer chemotherapeutic agents. Biomater Art Cells, Immobiol Biotechnol 1988; 16: 533–546.

    CAS  Google Scholar 

  121. Teicher BA, Holden SA. Survey of the effect of adding Fluosol-DA 20%02 to treatment with various chemotherapeutic agents. Cancr Treatment Rep 1987; 71: 173–177.

    CAS  Google Scholar 

  122. Teicher BA, Herman TS, Holden SA, Cathcart KNS. The effect of Fluosol-DA and oxygenation status on the activity of cyclophosphamide in vivo. Cancer Chemother Pharmacol 1988; 21: 286–291.

    PubMed  CAS  Google Scholar 

  123. Teicher BA, Waxman DJ, Holden SA, Wang Y, Clarke L, Alvarez Sotomayor E, Jones SM, Frei E III. Evidence for enzymatic activation and oxygen involvement in cytotoxicity and anti-tumor activity of N,N′,N′ ′-triethylenethiophosphoramide. Cancer Res 1989; 49: 4996–5001.

    PubMed  CAS  Google Scholar 

  124. Teicher BA, Holden SA, Rose CM. Effect of Fluosol-DA/02 on tumor cell and bone marrow cytotoxicity of nitrosoureas in mice bearing FSall fibrosarcoma. Int J Cancer 1986; 38: 285–288.

    Article  PubMed  CAS  Google Scholar 

  125. Teicher BA, Herman TS, Rose CM. Effect of Fluosol-DA® on the response of intracranial 9L tumors to x-rays and BCNU. Int J Radiat Oncol Biol Phys 1988; 15: 1187–1192.

    Article  PubMed  CAS  Google Scholar 

  126. Teicher BA, Holden SA, Rose CM. Differential enhancement of melphalan cytotoxicity in tumor and normal tissue by Fluosol-DA and oxygen breathing. Int J Cancer 1985; 36: 585–589.

    Article  PubMed  CAS  Google Scholar 

  127. Teicher BA, Holden SA, Jacobs JL. Approaches to defining the mechanism of enhancement by Fluosol-DA 20% with carbogen of melphalan antitumor activity. Cancer Res 1987; 47: 513–518.

    PubMed  CAS  Google Scholar 

  128. Teicher BA, Crawford JM, Holden SA, Cathcart KNS. Effects of various oxygenation conditions on the enhancement by Fluosol-DA of melphalan antitumor activity. Cancer Res 1987; 47: 5036–5041.

    PubMed  CAS  Google Scholar 

  129. Teicher BA, Herman TS, Tanaka J, Eder JP, Holden SA, Bubley G, Coleman CN, Frei E III. Modulation of alkylating agents by etanidazole and Fluosol-DA/carbogen in the FSallC fibrosarcoma and EMT6 mammary carcinoma. Cancer Res 1991; 51: 1086–1091.

    PubMed  CAS  Google Scholar 

  130. Teicher BA, Herman TS, Tanaka J, Dezube B, Pardee A, Frei E III. Fluosol-DA/carbogen with lonidamine or pentoxifylline as modulators of alkylating agents in the FSallC fibrosarcoma. Cancer Chemother Pharmacol 1991; 28: 45–50.

    Article  PubMed  CAS  Google Scholar 

  131. Catten M, Bresnahan D, Thompson S, Chalkly R. Novobiocin precipitates histones at concentrations normally used to inhibit eukaryotic type II topoisomerase. Nucleic Acid Res 1986; 14: 3671–3686.

    Article  Google Scholar 

  132. Wang JC. Recent studies of DNA topoisomerase. Ann Rev Biochem 1987; 909: 1–9.

    CAS  Google Scholar 

  133. Holm CT, Gato T, Wang JC, Botstein D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell 1985; 41: 553.

    Article  PubMed  CAS  Google Scholar 

  134. Prem veer Reddy G, Pardee A. Inhibitor evidence for allosteric interaction in the replicase complex. Nature (Lond) 1983; 304: 86.

    Article  Google Scholar 

  135. Ryaji M, Worcel A. Chromatin assembly in Xenopus oocytes: In vivo studies. Cell 1984; 37: 21.

    Article  Google Scholar 

  136. Mattern MR, Scudiero DA. Characterization of the inhibition of replicative and repair type DNA synthesis by novobiocin and nalidixic acid. Biochim Biophys Acta 1981; 653: 248.

    Article  PubMed  CAS  Google Scholar 

  137. Ross WE. DNA topoisomerases as targets for cancer therapy. Biochem Pharmacol 1985; 34: 4191–4195.

    Article  PubMed  CAS  Google Scholar 

  138. Glisson B, Gupta R, Hodges P, Ross W. Cross resistance to intercalating agents in an epipodo- phyllotoxic-resistant Chinese hamster ovary cell line: evidence for a common intracellular target. Cancer Res 1986; 46: 1939.

    PubMed  CAS  Google Scholar 

  139. Tanaka J, Teicher BA, Herman TS, Holden SA, Dezube B, Frei E III. Etoposide with lonidamine or pentoxifylline as modulators of alkylating agent activity in vivo. Int J Cancer 1991; 48: 631–637.

    Article  PubMed  CAS  Google Scholar 

  140. Teicher BA, Holden SA, Eder JP, Herman TS, Antman KH, Frei E III. Preclinical studies relating to the use of thiotepa in the high-dose setting alone and in combination. Semin Oncol 1990; 17: 18–32.

    PubMed  CAS  Google Scholar 

  141. Frei E III. Pharmacologic strategies for high-dose chemotherapy. In: Armitage JO, Antman KH, eds. High-Dose Cancer Therapy: Pharmacology, Hematopoietins, Stem Cells. Baltimore: Williams & Wilkins. 1992: 3–13.

    Google Scholar 

  142. Jones RB, Matthes S. Pharmacokinetics. In: Armitage JO, Antman KA, eds. High-Dose Cancer Therapy. Pharmacology, Hematopoietins, Stem Cells. Baltimore, MD: Williams & Wilkins. 1992: 43–60.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teicher, B.A. (1997). Preclinical Models for High-Dose Therapy. In: Teicher, B.A. (eds) Anticancer Drug Development Guide. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4615-8152-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8152-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4615-8154-3

  • Online ISBN: 978-1-4615-8152-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics