Skip to main content

Receptors in Muscles and Joints

  • Chapter
The Peripheral Nervous System

Abstract

Throughout the vertebrata, skeletal muscles are found to be provided with sensory receptors, as also appears to be the case for the joints upon which they act. The function of these receptors is to provide the central nervous system with information about the mechanical state of the body and thus to assist in the central control of muscle action. An engineer faced with the problem of controlling a motor of variable strength working into a variety of loads would undoubtedly incorporate feedback elements to monitor its performance, particularly if the motor were as nonlinear in its input-output relation as is skeletal muscle. Evolution would also appear to have long favored the use of feedback to achieve precision of action and has quite possibly brought about the development of control mechanisms that are more refined than any yet invented by man; at present, physiologists are mostly content with pointing out the analogy between biological control systems and engineered ones, rather than seeking novel principles in the biological ones. It is thus of some interest to describe the various biological transducers which provide the feedback information required for muscle control, even though we cannot yet specify the precise ways this information is used by the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adal, M. N., and Barker, D., 1965, Intramuscular branching of fusimotor fibres, J. Physiol. Lond. 177:288

    PubMed  CAS  Google Scholar 

  • Appelberg, B., Bessou, P., and Laporte, Y., 1966, Action of static and dynamic fusimotor fibres on secondary endings of cat’s spindles, J. Physiol. Lond. 185:160.

    PubMed  CAS  Google Scholar 

  • Barker, D., 1968, L’innervation motrice du muscle strié des vertébrés, in: Actualités Neurophysiologiques, 8th Ser., Vol. 23, Masson & Cie, Paris.

    Google Scholar 

  • Barker, D., Stacey, M. J., and Adal, M. N., 1970, Fusimotor innervation in the cat, Phil. Trans. Roy.. Soc. B 258:315.

    Article  Google Scholar 

  • Barker, D., Emonet-Dénand, F., Laporte, Y., Proske, U., and Stacey, M., 1973, Morphological identification and intrafusal distribution of the endings of static fusimotor axons in the cat, J. Physiol. Lond. 230:405.

    PubMed  CAS  Google Scholar 

  • Bessou, P., and Laporte, Y., 1965, Potentials fusoriaux provoqués par la stimulation de fibres fusimotorices chez la chat, Compt. Rend. Seanc. Acad. Sci. Paris 260:4827.

    CAS  Google Scholar 

  • Bessou, P., and Pagés, B., 1969, Intracellular recording from spindle muscle fibres of potentials elicited by static fusimotor axons in the cat, Life Sci. Oxford 8:417.

    Article  CAS  Google Scholar 

  • Bessou, P., Emonet-Dénand, F., and Laporte, Y., 1965, Motor fibres innervating extra fusal and intrafusal muscle fibres in the cat, J. Physiol. Lond. 180:649.

    PubMed  CAS  Google Scholar 

  • Bessou, P., Laporte, Y., and Pagès, B., 1968, Frequencygrams of spindle primary endings elicited by stimulation of static and dynamic fusimotor fibres, J. Physiol. Lond. 196:47.

    PubMed  CAS  Google Scholar 

  • Bone, Q., 1964, Patterns of muscular innervation in the lower chordates, Internat. Rev. Neurobiol. 6:99.

    Article  CAS  Google Scholar 

  • Boyd, I. A., 1965, The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles, Phil, Trans. Roy. Soc. B 245:81.

    Article  Google Scholar 

  • Boyd, I. A., 1966, The behaviour of isolated mammalian muscle spindles with intact innervation, J. Physiol. Lond. 186:109P.

    PubMed  CAS  Google Scholar 

  • Boyd, I. A., and Ward, J., 1969, The response of isolated cat muscle spindles to passive stretch, J. Physiol. Lond. 200:104P.

    PubMed  CAS  Google Scholar 

  • Brown, M. C., 1971a, A comparison of the spindles in two different muscles of the frog, J. Physiol. Lond. 216:553.

    CAS  Google Scholar 

  • Brown, M. C., 1911b. The responses of frog muscle spindles and fast and slow muscle fibres to a variety of mechanical inputs, J. Physiol. Lond. 218:1.

    Google Scholar 

  • Brown, M. C., and Butler, R. G., 1973, Studies on the site of termination of static and dynamic fusimotor fibers within muscle spindles of the tenuissimus muscle of the cat, J. Physiol. Lond. 233:553.

    PubMed  CAS  Google Scholar 

  • Brown, M. C., and Matthews, P. B. C., 1966, On the subdivision of the efferent fibres to muscle spindles into static and dynamic fusimotor fibres, in: Control and Innervation of Skeletal Muscle (B. L. Andrew, ed.), pp. 18–31, Thomson and Co., Dundee.

    Google Scholar 

  • Burgess, P. R., and Clark, J. F., 1969, Characteristics of knee joint receptors in the cat, J. Physiol. Lond. 203:317.

    PubMed  CAS  Google Scholar 

  • Cajal, S. R., 1090, Histologie du Systeme Nerveux de l’Homme et des Vertébrés, Vol. 1, pp. 485–489, Maloine, Paris.

    Google Scholar 

  • Chen, W. J., and Poppele, R. E., 1973, Static fusimotor effect on the sensitivity of mammalian muscle spindles, Brain Res. 57:244.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, S., and Daniel, P. M., 1963, Muscle spindles in man; their morphology in the lumbricals and the deep muscles of the neck, Brain 86:563.

    Article  PubMed  CAS  Google Scholar 

  • Corvaja, N., and Pompeiano, O., 1970, The differentiation of two types of intrafusal fibres in rabbit muscle spindles, Pflügers Arch. Ges. Physiol. 317:187.

    Article  CAS  Google Scholar 

  • Corvaja, N., Marinozzi, V., and Pompeiano, O., 1969, Muscle spindles in the lumbrical muscle of the adult cat: Electron microscopic observations and functional considerations, Arch. Ital. Biol. 107:365.

    PubMed  CAS  Google Scholar 

  • Crowe, A., and Matthews, P. B. C., 1964, Further studies of static and dynamic fusimotor fibres, J. Physiol. Lond. 174:132.

    PubMed  CAS  Google Scholar 

  • Crowe, A., and Ragab, A. H. M. F., 1970, The structure, distribution and innervation of spindles in the extensor digitorum brevis I muscle of the tortoise Testudo graeca, J. Anat. 106:521.

    PubMed  CAS  Google Scholar 

  • Dorward, P. K., 1970, Response characteristics of muscle afferents in the domestic duck, J. Physiol. Lond. 211:1.

    PubMed  CAS  Google Scholar 

  • Eyzaguirre, C., 1957, Functional organisation of neuromuscular spindle in the toad, J. Neurophysiol. 20:523.

    PubMed  CAS  Google Scholar 

  • Eyzaguirre, C., 1958, Modulation of sensory discharges by efferent spindle excitation, J. Neurophysiol. 21:465.

    PubMed  CAS  Google Scholar 

  • Freeman, M. A. R., and Wyke, B., 1967, The innervation of the knee joint: An anatomical and histological study in the cat, J. Anat, 101:505.

    PubMed  CAS  Google Scholar 

  • Fukami, Y., 1970a, Tonic and phasic muscle spindles in snake, J. Neurophysiol. 33:28.

    CAS  Google Scholar 

  • Fukami, Y., 1970b, Accommodation in afferent nerve terminals of snake muscle spindle, J. Neurophysiol. 33:475.

    CAS  Google Scholar 

  • Fukami, Y., and Hunt, C. C., 1970, Structure of snake muscle spindles, J. Neurophysiol. 33:9.

    PubMed  CAS  Google Scholar 

  • Gardner, E., 1950, Physiology of movable joints, Physiol. Rev. 30:127.

    PubMed  CAS  Google Scholar 

  • Godwin-Austen, R. B., 1969, The mechanoreceptors of the costo-vertebral joints, J. Physiol. Lond. 202:137.

    Google Scholar 

  • Goodwin, G. M., and Matthews, P. B. C., 1971, Effects of fusimotor stimulation on the sensitivity of muscle spindle endings to small-amplitude sinusoidal stretching, J. Physiol. Lond. 218:56P.

    PubMed  Google Scholar 

  • Goodwin, G. M., McCloskey, D. I., and Matthews, P. B. C., 1972, The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents, Brain 95:705.

    Article  PubMed  CAS  Google Scholar 

  • Gray, E. G., 1957, The spindle and extrafusal innervation of a frog muscle, Proc. Roy. Soc. Lond. B 146:416.

    Article  CAS  Google Scholar 

  • Houk, J., and Henneman, E., 1967, Responses of Golgi tendon organs to active contract tions of the soleus muscle of the cat, J. Neurophysiol. 30:466.

    PubMed  CAS  Google Scholar 

  • Houk, J. C., Singer, J. J., and Henneman, E., 1971, Adequate stimulus for tendon organs with observations on mechanics of ankle joint, J. Neurophysiol. 34:1051.

    PubMed  CAS  Google Scholar 

  • Huber, G. C., and DeWitt, L. M. A., 1897, A contribution on the motor nerve-ending and on the nerve-endings in the muscle-spindles, J. Comp. Neurol. 7:169.

    Article  Google Scholar 

  • Hunt, C. C., and Wylie, R. M., 1970, Responses of snake muscle spindles to stretch and intrafusal muscle contraction, J. Neurophysiol. 33:1.

    PubMed  CAS  Google Scholar 

  • Husmark, I., and Ottoson, D., 1970, Relation between tension and sensory response of the isolated frog muscle spindle during stretch, Acta Physiol. Scand. 79:321.

    Article  PubMed  CAS  Google Scholar 

  • Husmark, I., and Ottoson, D., 1971, The contribution of mechanical factors to the early adaptation of the spindle response, J. Physiol. Lond. 212:577.

    PubMed  CAS  Google Scholar 

  • Ito, F., 1968, Functional properties of tendon receptors in the frog, Jap. J. Physiol. 18:576.

    Article  CAS  Google Scholar 

  • Jahn, S. A., 1968, Static elasticity of isolated muscle spindles of the frog and tension development of their intrafusal muscle fibres, Acta Physiol. Scand. 74:384.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, J. K. S., and Matthews, P. B. C., 1962, The central control of the dynamic response of muscle spindle receptors, J. Physiol. Lond. 161:357.

    PubMed  CAS  Google Scholar 

  • Karlsson, U., and Andersson-Cedergren, E., 1966, Motor myoneural junctions on frog intrafusal muscle fibres, J. Ultrastruct. Res. 14:191.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, U., Andersson-Cedergren, E., and Ottoson, D., 1966, Cellular organization of the frog muscle spindle as revealed by serial sections for electron microscopy, J. Ultrastruct. Res. 14:1

    Article  Google Scholar 

  • Katz, B., 1949, The efferent regulation of the muscle spindle in the frog, J. Exptl. Biol. 26 201.

    CAS  Google Scholar 

  • Katz, B., 1950, Depolarization of sensory terminals and the initiation of impulses in the muscle spindle, J. Physiol. Lond. 111:261.

    PubMed  CAS  Google Scholar 

  • Katz, B., 1961, The termination of the afferent nerve fibre in the muscle spindle of the frog, Phil. Trans. Roy. Soc. B 243:221.

    Article  Google Scholar 

  • Kirkwood, P. A., 1972, The frequency response of frog muscle spindles under various conditions, J. Physiol. Lond. 222:135.

    PubMed  CAS  Google Scholar 

  • Koketsu, K., and Nishi, S., 1957, Action potentials of single intrafusal muscle fibres of frogs, J. Physiol. Lond. 137:193.

    PubMed  CAS  Google Scholar 

  • Kuffler, S. W., Hunt, C. C., and Quilliam, J. P., 1951, Function of medullated small-nerve fibres in mammalian ventral roots: Efferent muscle spindle innervation, J. Neurophysiol. 14:29.

    PubMed  CAS  Google Scholar 

  • Leksell, L., 1945, The action potential and excitatory effects of the small ventral root fibres to skeletal muscle, Acta Physiol. Scand. 10:1 (Suppl. 31).

    Article  Google Scholar 

  • Maier, A., and Eldred, E., 1971, Comparisons in the structure of avian muscle spindles, J. Comp. Neurol. 143:25.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, B. H. C., 1931, The response of a single end organ, J. Physiol. Lond. 71:64.

    PubMed  CAS  Google Scholar 

  • Matthews, B. H. C., 1933, Nerve endings in mammalian muscle, J. Physiol. Lond. 78:1.

    PubMed  CAS  Google Scholar 

  • Matthews, P. B. C., 1962, The differentiation of two types of fusimotor fibre by their effects on the dynamic response of muscle spindle primary endings, Quart. J. Exptl. Physiol. 47:324.

    CAS  Google Scholar 

  • Matthews, P. B. C., 1964, Muscle spindles and their motor control, Physiol. Rev. 44:219.

    PubMed  CAS  Google Scholar 

  • Matthews, P. B. C., 1972, Mammalian Muscle Receptors and Their Central Actions, Arnold, London.

    Google Scholar 

  • Matthews, P. B. C., and Stein, R. B., 1969a, The sensitivity of muscle spindle afferents to small sinusoidal changes of length, J. Physiol. Lond. 200:723.

    CAS  Google Scholar 

  • Matthews, P. B. C., and Stein, R. B., 1969b, The regularity of primary and secondary muscle spindle afferent discharges, J. Physiol. Lond. 202:59.

    CAS  Google Scholar 

  • Matthews, P. B. C., and Westbury, D. R., 1965, Some effects of fast and slow motor fibres on muscle spindles of the frog, J. Physiol. Lond. 178:178.

    PubMed  CAS  Google Scholar 

  • Ottoson, D., and Shepherd, G. M., 1970, Length changes within isolated frog muscle spindle during and after stretching, J. Physiol. Lond. 207:141.

    Google Scholar 

  • Page, S. G., 1966, Intrafusal muscle fibres in the frog, J. Microscop. 5:101.

    Google Scholar 

  • Perroncito, A., 1901, Sur la terminaison des nerfs dans les fibres musculaires striées, Arch. Ital. Biol. 36:245.

    Google Scholar 

  • Poppele, R. E., and Bowman, R. J., 1970, Quantitative description of linear behaviour of mammalian muscle spindles, J. Neurophysiol. 33:59.

    PubMed  CAS  Google Scholar 

  • Proske, U., 1969a, The innervation of muscle spindles in the lizard, Tiliqua nigrolutea, J. Anat. 105:217.

    Google Scholar 

  • Proske, U., 1969b, An electrophysiological analysis of responses from lizard muscle spindles, Physiol. Lond. 205:289.

    CAS  Google Scholar 

  • Regaud, C., and Favre, M., 1904, Les terminaisons nerveuses et les organes nerveux sensitifs de l’appareil locomoteur, Rev. Gen. Histol. 1:1.

    Google Scholar 

  • Ruffini, A., 1898, On the minute anatomy of the neuromuscular spindles of the cat, and on their physiological significance, J. Physiol. Lond. 23:190.

    PubMed  CAS  Google Scholar 

  • Skoglund, S., 1956, Anatomical and physiological studies of knee joint innervation in the cat, Acta Physiol. Scand. 36:1 (Suppl. 124).

    Article  CAS  Google Scholar 

  • Smith, R. S., 1964a, Activity of intrafusal muscle fibres in muscle spindles of Xenopus laevis, Acta Physiol. Scand. 60:223.

    Article  CAS  Google Scholar 

  • Smith, R. S., 1964b, Contraction in intrafusal muscle fibres of Xenopus laevis following stimulation of their motor nerves, Acta Physiol. Scand. 62:195.

    Article  CAS  Google Scholar 

  • Smith, R. S., 1966, Properties of intrafusal muscle fibres, in: Nobel Symposium I, Muscular afferents and Motor Control (R. Granit, ed.), pp. 69–80, Almqvist and Wiksell, Stockholm.

    Google Scholar 

  • Stuart, D. G., Goslow, G. E., Mosher, C. G., and Reinking, R. M., 1970, Stretch responsiveness of Golgi tendon organs, Exptl. Brain Res. 10:463.

    CAS  Google Scholar 

  • Szepsenwol, J., 1960, The neuromuscular spindle in the lizard, Anolis cristatellus, Cellule 61:21.

    Google Scholar 

  • Yellin, H., 1969, A histochemical study of muscle spindles and their relationship to extrafusal fibre types in the rat, Am. J. Anat. 125:31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Matthews, P.B.C. (1974). Receptors in Muscles and Joints. In: Hubbard, J.I. (eds) The Peripheral Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8699-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8699-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8701-9

  • Online ISBN: 978-1-4615-8699-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics