Skip to main content

The Effect of Bicarbonate on Anion Reabsorption Along the Dog Nephron

  • Chapter
Phosphate and Minerals in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 128))

  • 128 Accesses

Abstract

Alkalosis, either of metabolic or respiratory origin, alters urinary phosphate excretion in man (1,2), dogs (3–5) and rats (6–10). Thus alkalinization of the urine with infusions of sodium bicarbonate decreases renal tubular phosphate reabsorption. A number of indirect factors have been used to explain the resultant phosphaturia following bicarbonate infusion, including volume expansion, enhanced filtered load, hypocalcemia, and endogenous release of parathyroid hormone (PTH). Alternatively, a direct action of HCO3 on tubular phosphate could explain the resultant phosphaturia. This could arise from intraluminal alkalinization with an increase in the HPO4 =/H2PO4 ratio. Bank et al (6) have shown by in vivo microperfusion studies that H2PO4 is transported more readily by the rat proximal tubule than HPO4 =. These findings however are at variance with findings of Ullrich and colleagues (7,10) suggesting that it is the divalent form which is preferentially reabsorbed. Furthermore, Ullrich et al (10) have demonstrated that intracellular alkalosis in addition to luminal acidosis inhibits transtubular phosphate transport. The interaction of HCO3 with phosphate has been most extensively examined in the rat (6–10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mostellar, M. E., and Tuttle, E. P., Jr., 1964, Effects of alkalosis on plasma concentration and urinary excretion of inorganic phosphate in man, J. Clin. Invest., 43:138–149.

    Article  PubMed  CAS  Google Scholar 

  2. Puschett, J. B., and Goldberg, M., 1969, The relationship between the renal handling of phosphate and bicarbonate in man, J. Lab. Clin. Med., 73:956–969.

    PubMed  CAS  Google Scholar 

  3. Malvin, R. L., and Lotspeich, W. D., 1956, Relation between tubular transport of inorganic phosphate and bicarbonate in the dog, Am. J. Physiol., 187:51–56.

    PubMed  CAS  Google Scholar 

  4. Fulop, M., and Brazeau, P., 1968, The phosphaturic effect of sodium bicarbonate and acetazolamide in dogs, J. Clin. Invest., 47:983–991.

    Article  PubMed  CAS  Google Scholar 

  5. Mercado, A., Slatopolsky, E., and Klahr, S., 1975, On the mechanisms responsible for the phosphaturia of bicarbonate administration, J. Clin. Invest., 56:1386–1395.

    Article  PubMed  CAS  Google Scholar 

  6. Bank, N., Aynedjian, H. S., and Weinstein, S. W., 1974, A microperfusion study of phosphate reabsorption by the rat proximal tubule. Effect of parathyroid hormone, J. Clin. Invest., 54:1040–1048.

    Article  PubMed  CAS  Google Scholar 

  7. Baumann, K., Rumrich, G., Papvassiliou, F., and Kloss, S., 1975, pH-dependence of phosphate reabsorption in the proximal tubule of rat kidney, Pfluegers Arch., 360: 183–187.

    Article  CAS  Google Scholar 

  8. Cassola, A. C., and Malnic, G., 1977, Phosphate transfer and tubular pH during renal stopped flow microperfusion experiments in the rat, Pfluegers Arch., 367: 249–255.

    Article  CAS  Google Scholar 

  9. Zilenovski, A. M., Kuroda, S., Bhat, S., Bank, D. E., and Bank, N., 1979, Effect of sodium bicarbonate on phosphate excretion in acute and chronic PTX rats, Am. J. Physiol., 236:184–191.

    Google Scholar 

  10. Ullrich, K. J., Rumrich, G., and Kloss, S., 1978, Phosphate transport in the proximal convolution of the rat kidney. III. Effect of extracellular and intracellular pH, Pfluegers Arch., 377: 33–42.

    Article  CAS  Google Scholar 

  11. Webb, R. K., Woodhall, P. B., Tisher, C.C., Glaubiger, G., Neelon, F. A., and Robinson, R.R., 1977, Relationship between phosphaturia and acute hypercapnia in the rat, J. Clin. Invest., 60:829–837.

    Article  PubMed  CAS  Google Scholar 

  12. Clapp, J. R., Watson, J. R., and Berliner, R. W., 1963, Osmolality, bicarbonate concentration and water reabsorption in proximal tubule of the dog nephron, Am. J. Physiol., 205:273–280.

    Google Scholar 

  13. Bernstein, B. A., and Clapp, J. R., 1968, Micropuncture study of bicarbonate reabsorption by the dog nephron, Am. J. Physiol., 214:251–257.

    PubMed  CAS  Google Scholar 

  14. Puschett, J. B., and Zurbach, P., 1976, Acute effects of parathyroid hormone on proximal bicarbonate transport in the dog, Kidney Inter., 9: 501–510.

    Article  CAS  Google Scholar 

  15. Puschett, J. B., Sylk, D., and Teredesai, P. R., 1978, Uncoupling of proximal sodium bicarbonate from sodium phosphate transport by bumetanide, Am. J. Physiol., 235:403–408.

    Google Scholar 

  16. Morel, F., and Roinel, N., 1969, Application de la microsonde électronique a l’analyse elementaire quantitative d’échantillons liquides d’un volume inférieur a 10-9, J. Chim. Phys., 66:1084–1091.

    CAS  Google Scholar 

  17. Morel, F., Roinel, N., and LeGrimellec, C., 1969, Electron probe analysis of tubular fluid composition, Nephron, 6: 350–364.

    Article  PubMed  CAS  Google Scholar 

  18. Vurek, G. G., Warnock, D. G., and Coisey, R., 1975, Measurement of picomole units of carbon dioxide by calorimetry, Anal. Chem., 47:765–769.

    Article  PubMed  CAS  Google Scholar 

  19. Rector, F. C., Jr., 1976, Renal acidification and ammonia production in: “The Kidney”, Vol. I, Chap. 9, W. B. Saunders Co.

    Google Scholar 

  20. Seldin, D. W., 1976, Metabolic alkalosis in: “The Kidney”, Vol. I, Chap. 17, W. B. Saunders Co.

    Google Scholar 

  21. Rector, F. C., Jr., Carter, N. W., and Seldin, D. W., 1965, The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney, J. Clin. Invest., 44:278–290.

    Article  PubMed  CAS  Google Scholar 

  22. Vieira, F. L., and Malnic, G, 1968, Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode, Am. J. Physiol., 214:710–718.

    PubMed  CAS  Google Scholar 

  23. Levine, D. Z., Nash, L. A., Chan, T., and Dubrovskis, A. H. E., 1976, Proximal bicarbonate reabsorption during Ringer and albumin infusions in the rat, J. Clin. Invest., 57:1490–1497.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Wong, N.L.M., Quamme, G.A., Dirks, J.H. (1980). The Effect of Bicarbonate on Anion Reabsorption Along the Dog Nephron. In: Massry, S.G., Ritz, E., Jahn, H. (eds) Phosphate and Minerals in Health and Disease. Advances in Experimental Medicine and Biology, vol 128. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9167-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9167-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9169-6

  • Online ISBN: 978-1-4615-9167-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics