Skip to main content

Abstract

While the aerobic life-style offers great advantages, it is subject to oxygen toxicity due to endogenous activation of ground-state molecular oxygen to the superoxide anion radical (O ·−2 ), hydrogen peroxide (H2O2) and hydroxyl radical (OH). Thus, “any organism that avails itself of the benefits of oxygen does so at the cost of maintaining an elaborate system of defenses against these intermediates,” (Fridovich, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121–126.

    PubMed  CAS  Google Scholar 

  • Ahmad, S. (1992) Biochemical defence of pro-oxidant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296.

    CAS  Google Scholar 

  • Ahmad, S., Beilstein, M.A. and Pardini, R.S. (1989) Glutathione peroxidase activity in insects: a reassessment. Arch. Insect Biochem. Physiol. 12, 31–49.

    CAS  Google Scholar 

  • Ahmad, S., Brattsten, L.B., Mullin, C.A. and Yu, S.J. (1986) Enzymes involved in the metabolism of plant allelochemicals. In Molecular Aspects of Insect-plant Associations ( L.B. Brattsten and S. Ahmad, eds.), Plenum Press, New York, pp. 73–153.

    Google Scholar 

  • Ahmad, S., Duval, D.L., Weinhold, L.C. and Pardini, R.S. (1991) Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochem. 21, 563–572.

    CAS  Google Scholar 

  • Ahmad, S. and Pardini, R.S. (1988) Evidence for the presence of glutathione peroxidase activity towards an organic hydroperoxide in larvae of the cabbage looper moth, Trichoplusiani. Insect Biochem. 18, 861–866.

    CAS  Google Scholar 

  • Ahmad, S. and Pardini, S. (1989) Corrigendum, Insect Biochem. 19, 109.

    Google Scholar 

  • Ahmad, S. and Pardini, R.S. (1990a) Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Rad. Biol. Med. 8, 401–413.

    PubMed  CAS  Google Scholar 

  • Ahmad, S. and Pardini, R.S. (1990b) Antioxidant defense of the cabbage looper, Trichoplusia ni: enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochem. Photobiol. 51, 305–311.

    CAS  Google Scholar 

  • Ahmad, S., Pritsos, C.A., Bowen, S.M., Heisler, C.R., Blomquist, G.J. and Pardini, R.S. (1988a) Subcellular distribution and activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in the southern army- worm, Spodoptera eridania. Arch. Insect Biochem. Physiol. 7, 173–186.

    CAS  Google Scholar 

  • Ahmad, S., Pritsos, C.A., Bowen, S.M., Heisler, C.R., Blomquist, G.J. and Pardini, R.S. (1988b) Antioxidant enzymes of the cabbage looper moth, Trichoplusia ni: subcellular distribution and activities of superoxide dismutase, catalase and glutathione reductase. Free Rad. Res. Commun. 4, 403–408.

    CAS  Google Scholar 

  • Ahmad, S., Pritsos, C.A. and Pardini, R.S. (1990) Antioxidant enzyme activities in subcellular fractions of the black swallowtail butterfly, Papilio polyxenes. Arch. Insect Biochem. Physiol. 15, 101–109.

    CAS  Google Scholar 

  • Anderson, M.E. (1987) Tissue glutathione. In CRC Handbook of Methods for Oxygen Radical Research R.A. Greenwald, (ed.), CRC Press, Boca Raton, FL, pp. 317–323.

    Google Scholar 

  • Archibald, F.S. and Fridovich, I. (1981) Defense against oxygen toxicity in Lactobacillus planatarum. J. Bacteriol. 145, 442–451.

    PubMed  CAS  Google Scholar 

  • Armstrong, D., Rinehart, R., Dixon, L. and Reigh, D. (1978) Changes of peroxidase with age in Drosophila. Age 1, 8–12.

    CAS  Google Scholar 

  • Asada, K. (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant 85, 235–241.

    CAS  Google Scholar 

  • Aucoin, R.R., Philogene, B.J.R. and Arnason, J.T. (1991) Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 16, 139–152.

    CAS  Google Scholar 

  • Avissar, N., Slemonnon, J.R., Palmer, I.S. and Cohen, H.J. (1991) Partial sequence of human plasma glutathione peroxidase and immunologic identification of milk glutathione peroxidase as the plasma enzyme. J. Nutr. 121, 1243–1249.

    PubMed  CAS  Google Scholar 

  • Best-Belpomme, M. and Ropp, M. (1982) Catalase is induced by ecdysterone and ethanol in Drosophila cells. Eur. J. Biochem. 121, 349–355.

    PubMed  CAS  Google Scholar 

  • Borg, D.C. and Schaich, K.M. (1988) Iron and hydroxyl radicals in lipid peroxidation: Fenton reactions in lipid and nucleic acids co-oxidized with lipids. In Oxy radicals in Molecular Biology and Pathology ( P.A. Cerutti, I. Fridovich and J.M. McCord eds.), Allan R. Liss, New York, pp. 427–441.

    Google Scholar 

  • Borracino, G., Dipierro, S. and Arrigoni, O. (1989) Interaction of ascorbate free radical with sulfhydryl reagents. Phytochemistry 28, 715–717.

    Google Scholar 

  • Boveris, A. (1978) Production of superoxide anion and hydrogen peroxide in yeast mitochondria. In Biochemistry and Genetics of Yeasts, ( M. Bacila, B.L. Horecker and A.O.M. Stoppani, eds.), Academic Press, New York, pp. 65–80.

    Google Scholar 

  • Bowler, C., Alliotte, A., DeLoose, M., Van Montagu, M. and Inze, D. (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J. 8, 31–38.

    PubMed  CAS  Google Scholar 

  • Brunmark, A., Cadenas, E., Lind, C., Segura-Aguilar, J. and Ernster, L. (1987) DT-diaphorase catalyzed two-electron reduction of quinone epoxides. Free Rad. Biol. Med. 3, 181–188.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Hochstein, P. and Ernster, L. (1992) Pro- and antioxidant function of quinones and quinine derivatives in mammalian cells. Adv. Enzymol. 65, 97–146.

    PubMed  CAS  Google Scholar 

  • Carlberg, I. and Mannervik, B. (1985) Glutathione reductase. Method Enzymol. 113, 484–490.

    CAS  Google Scholar 

  • Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  • Chaudiere, J., Wilhemsen, E.C. and Tappel, A.L. (1984) Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J. Biol. Chem. 259, 1043–1050.

    PubMed  CAS  Google Scholar 

  • Chen, G.-X. and Asada, K. (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30, 987–998.

    CAS  Google Scholar 

  • Chu, F.F., Doroshow, J.H. and Esworthy, R.S. (1993) Expression, characterization, and tissue distribution of a new selenium-dependent glutathione peroxidase, GSHPx-GI. J. Biol. Chem. 268, 2571–2576.

    PubMed  CAS  Google Scholar 

  • Claiborne, A., Malinowski, D.P. and Fridovich, I. (1979) Purification and characterization of hydroperoxidase II of Escherichia coli B. J. Biol. Chem. 254, 11664–11668.

    PubMed  CAS  Google Scholar 

  • Dalton, D.A. (1990) Ascorbate peroxidase. In Peroxidases in Chemistry and Biology, Vol. II, ( J. Everse, K. Everse and M.B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 139–153.

    Google Scholar 

  • Dalton, D.A., Hanus, F.J., Russell, F.J. and Evans, H.J. (1987) Purification, properties and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol. 83, 789–794.

    PubMed  CAS  Google Scholar 

  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A. and Evans, E.H. (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci. USA 83, 3811–3815.

    PubMed  CAS  Google Scholar 

  • Danielson, U.H., Esterbauer, H. and Mannervik, B. (1987) Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalyzed by mammalian glutathione transferases. Biochem. J. 247, 707–713.

    PubMed  CAS  Google Scholar 

  • Davies, K.J. A. (1986) Intracellular proteolytic systems may function as secondary defenses: an hypothesis. J. Free Rad. Biol. Med. 2, 155–173.

    CAS  Google Scholar 

  • Del Vicchio, R.J. (1988). Some physiological effects of gamma radiation on larvae of the navel orangeworm (Amyelosis transitella). Ph.D. dissertation, University of California, Davis, CA.

    Google Scholar 

  • Dipierro, S. and Borraccino, G. (1991) Dehydroascorbate reductase from potato tubers. Phytochemistry 30, 427–429.

    CAS  Google Scholar 

  • Donnelly, T.J., Sievers, R.E., Vissern, F.L.J., Welch, W.J. and Wolfe, C.L. (1992) Heat shock protein induced in rat hearts. Circulation 85, 769–778.

    PubMed  CAS  Google Scholar 

  • Farr, S.B. and Kogoma, T. (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. Microbiol. Rev. 55, 561–585.

    PubMed  CAS  Google Scholar 

  • Felton, G.W. and Duffy S.S. (1992) Ascorbate oxidation-reduction in Helicoverpa zea as a scavenging system against dietary oxidants. Arch. Insect Biochem. Physiol. 19, 27–37.

    CAS  Google Scholar 

  • Flohe, L. and Gunzler, W.A. (1973) Glutathione peroxidase. In Glutathione ( L. Flohe, ed.), Academic Press, New York, pp. 132–145.

    Google Scholar 

  • Fridovich, I. (1988) Superoxide radical: an endogenous toxicant. Ann. Rev. Pharmacol. Toxicol. 23, 239–257.

    Google Scholar 

  • Getzoff, E.D., Tainer, J.A., Weiner, P.K., Kollman, P.A., Richardson, J.S. and Richardson, D.C. (1983) Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 306, 284–287.

    PubMed  Google Scholar 

  • Giorgi, F. and Deri, P. (1976) Cytochemistry of late ovarian chambers of Drosophila melanogaster. Histochemistry 48, 325–334.

    PubMed  CAS  Google Scholar 

  • Groden, D. and Beck, E. (1979) H2O2 destruction by ascorbate-dependent systems from chloroplasts. Biochim. Biophys. Acta 546, 426–435.

    PubMed  CAS  Google Scholar 

  • Gutteridge, J.M.C. and Quinlan, G.J. (1993) Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidizing proteins. Biochim. Biophys. Acta 1156, 144–150.

    PubMed  CAS  Google Scholar 

  • Habig, W.H. Pabst, M.H. and Jakoby, W.B. (1974) Glutathione-S-transf erase. The first enzyme step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. (1982) Ascorbic acid and the illuminated chloroplast. in Ascorbic Acid: Chemistry, Metabolism, and Uses (P.A. Seib and B.M. Tolbert, eds.), Adv. Chem. Ser. 200, Am. Chem. Soc., Washington, D.C., pp. 263–274.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1990a) The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1–8.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1990b) Role of free radicals and catalytic metal ions in human disease. Methods Enzymol. 186, 1–85.

    PubMed  CAS  Google Scholar 

  • Harris, E.D. (1993) Regulation of antioxidant enzymes. FASEB J. 6, 2675–2683.

    Google Scholar 

  • Hasson, C. and Sugumaran, M. (1987) Protein cross-linking by peroxidase: possible mechanism for sclerotization of insect cuticle. Arch. Insect Biochem. Physiol. 5, 13–28.

    CAS  Google Scholar 

  • Heimberger, A. and Eisenstark, A. (1988) Compartmentalization of catalases in Escherichia coli. Biochem. Biophys. Res. Commun. 154, 392–397.

    PubMed  CAS  Google Scholar 

  • Hochman, A. and Shemesh, A. (1987) Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J. Biol. Chem. 262, 6871–6976.

    PubMed  CAS  Google Scholar 

  • Jacobson, F.S., Morgan, R.W., Christman, M.F. and Ames, B.N. (1989) An alkyl hydroperoxidase reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J. Biol. Chem. 264, 1488–1496.

    PubMed  CAS  Google Scholar 

  • Jakoby, W.B. (1985) Glutathione transferases: an overview. Method Enzymol. 113, 495–499.

    CAS  Google Scholar 

  • Jones, D.P., Eklow, L., Thor, H. and Orrenius, S. (1981) Metabolism of hydrogen peroxide in isolated hepatocytes: Relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys. 210, 505–516.

    PubMed  CAS  Google Scholar 

  • Ketterer, B. and Coles, B. (1991) Glutathione transferases and products of reactive oxygen. In Oxidative Stress Oxidants and Antioxidants ( H. Sies ed.), Academic Press, London, pp. 171–194.

    Google Scholar 

  • Ketterer, B. and Meyer, D.J. (1989) Glutathione transferases: a possible role in the detoxication and repair of DNA and lipid hydroperoxides. Mutat. Res. 21, 33–40.

    Google Scholar 

  • Klapper, I., Hagstron, R., Fine, R. and Hnig, B. (1986) Focusing of isoelectric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modifications. Proteins 1, 47–59.

    PubMed  CAS  Google Scholar 

  • Krinsky, N.I. (1992) Mechanism of action of biological antioxidants (43429). P.S.E.B.M. 200, 248–254.

    CAS  Google Scholar 

  • Law, J.H., Ribeiro, J.M.C. and Wells, M.A. (1992) Biochemical insight derived from insect diversity. Ann. Rev. Biochem. 61, 87–111.

    PubMed  CAS  Google Scholar 

  • Lee, S.H. and Kim, C.S. (1992) Induction of stress proteins in cultured cells by heat and mercury. J. Catholic Med. Coll. 45, 21–30.

    Google Scholar 

  • Mannervik, B. (1985) Glutathione peroxidase. Methods Enzymol. 113, 490–495.

    PubMed  CAS  Google Scholar 

  • Mannervik, B., Guttenberg, C., Jensson, H., Tahir, M.K., Warholm, M. and Jorvall, H. (1985) Identification of three classes of cytosolic glutathione transferases common to several mammalian species: correlation between structural data and enzymatic properties. Proc. Natl. Acad. Sci. USA 82, 7202–7206.

    PubMed  CAS  Google Scholar 

  • Martin Jr., J.P. and Fridovich, I. (1981) Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont Photobacter leigonathi: the close relationship between bacteriocuprein and the copper-zinc superoxide dismutase of teleost fishes. J. Biol. Chem. 256, 6080–6089.

    PubMed  CAS  Google Scholar 

  • Masuda, A., Longo, D.L., Kobayashi, Y., Appella, E., Oppenheim, J.J. and Matsushima, K. (1988) Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J. 2, 3087–3091.

    PubMed  CAS  Google Scholar 

  • McCord, J.M. (1985) Oxygen-derived free radicals in postischemic injury. New Engl. J. Med. 312, 159–163.

    PubMed  CAS  Google Scholar 

  • Mehlhorn, R.J., Fuchs, J., Sumida, S. and Packer, L. (1990) Preparation of tocopheroxyl radicals for detection by electron spin resonance. Methods Enzymol. 186, 197–205.

    PubMed  CAS  Google Scholar 

  • Meister, A. and Anderson, M.E. (1993) Glutathione. Ann. Rev. Biochem. 52, 711–760.

    Google Scholar 

  • Meyer, D.J., Coles, B., Pemble, S.E., Gilmore, K.S., Fraser, G.M. and Ketterer, B. (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 274, 409–414.

    PubMed  CAS  Google Scholar 

  • Meyers, D.M., Ahmad, S. and Pardini, R.S. (1992) Protective role of glutathione-S-transferase against lipid peroxidation in an insect species. FASEB J. 6, 3942 (abstr.).

    Google Scholar 

  • Michiels, C. and Ramacle, J. (1988) Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur. J. Biochem. 177, 435–441.

    PubMed  CAS  Google Scholar 

  • Misra, H.P. (1979) Reaction of copper-zinc superoxide dismutase with diethyldithiocarbamate. J. Biol Chem. 254, 11623–11628.

    PubMed  CAS  Google Scholar 

  • Mitchell, J.M., Ahmad, S. and Pardini, R.S. (1991) Purification of a highly active catalase from cabbage loopers, Trichoplusia ni. Insect Biochem. 21, 641–646.

    CAS  Google Scholar 

  • Morgenstern, R. and DePierre, J.W. (1988) Membrane-bound glutathione transferases. In Glutathione Conjugation. Mechanisms and Biological Significance ( H. Sies and B. Ketterer, eds.), Academic Press, London, pp. 157–174.

    Google Scholar 

  • Nahmias, J.A. and Bewley, G.C. (1984) Characterization of catalase purified from Drosophila melanogaster by hydrophobic interaction chromatography. Comp. Biochem. Physiol. 77B, 355–364.

    Google Scholar 

  • Nickla, H., Anderson, J. and Palzkill, T. (1983) Enzymes involved in oxygen detoxification during development of Drosophila melanogaster. Experientia 39, 610–617.

    PubMed  CAS  Google Scholar 

  • Nohl, H. and Jordan, W. (1980) The metabolic fate of mitochondrial hydrogen peroxide. Eur. J. Biochem. 111, 203–210.

    PubMed  CAS  Google Scholar 

  • Pacifici, R.E., Salo, D.C. and Davies, K.J.A. (1989) A 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Rad. Biol. Med. 7, 521–536.

    PubMed  CAS  Google Scholar 

  • Packer, L. (1987) Antioxidant responses of the glutathione system, vitamin E, ubiquinones, and a free radical reductase. J. Proc. 4th Int. Cong, on Oxygen Radicals, University of California at San Diego, La Jolla, pp. 32–33 (abstr.).

    Google Scholar 

  • Paoletti, F. and Mocali, A. (1990) Determination of superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation. Meth. Enzymol. 186, 209–220.

    PubMed  CAS  Google Scholar 

  • Pardini, R.S. and Ahmad, S. (1991) Effects of quinones on antioxidant enzymes of insects. Proc. ASPET Meeting, The Pharmacologist 33, 345.

    Google Scholar 

  • Pemble, S.E. and Taylor J.B. (1992) An evolutionary perspective on glutathione transferases inferred from class-Theta glutathione cDNA sequences. Biochem. J. 287, 957–963.

    PubMed  CAS  Google Scholar 

  • Pritsos, C.A., Ahmad, S., Elliott, A.J. and Pardini, R.S. (1990) Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth Spodoptera eridania. Free Rad. Res. Commun. 9, 127–133.

    CAS  Google Scholar 

  • Prohaska, J.R. (1980) The glutathione peroxidase activity of glutathione-S-transferases. Biochim. Biophys. Acta 611, 87–98.

    PubMed  CAS  Google Scholar 

  • Puget, K. and Michelson, A.M. (1974) Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem. Biophys. Res. Commun. 58, 830–838.

    PubMed  CAS  Google Scholar 

  • Puntarulo, S., Galleano, M., Sanchez, R.A. and Boveris, A. (1991) Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim. Biophys. Acta 1074, 277–283.

    PubMed  CAS  Google Scholar 

  • Rose, R.C. and Bode, A.M. (1992) Tissue-mediated regeneration of ascorbic acid: is the process enzymatic? Enzyme 46, 196–203.

    PubMed  CAS  Google Scholar 

  • Ross, M.J. and Reith, E.J. (1985) Histology: A Textbook and Atlas. Harper and Row, New York.

    Google Scholar 

  • Salin, M.L. (1987) Preparation of iron-containing superoxide dismutases from eukaryotic organisms. In CRC Handbook of Methods for Oxygen Radical Research ( R. A. Greenwald, ed.), CRC Press, Boca Raton, FL, pp. 9–13.

    Google Scholar 

  • Samokyszyn, V.M., Miller, D.M., Reif, D.W. and Aust, S.D. (1989) Inhibition of superoxide and ferritin-dependent lipid peroxidation by Ceruloplasmin. J. Biol. Chem. 264, 21–26.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M.J. (1992) Heat shock proteins. J. Biol Chem. 265, 12111–12114.

    Google Scholar 

  • Schirmer, R.H., Krauth-Siegel, R.L. and Schulz, G.E. (1989) Glutathione reductase. In Glutathione: Biochemical & Medical Aspects, Part A ( D. Dolphin, R. Poulson and O. Avramovic, eds.), Wiley, New York, pp. 554–596.

    Google Scholar 

  • Sharp, K., Fine, R. and Honig, B. (1987) Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science 236, 1460–1463.

    PubMed  CAS  Google Scholar 

  • Sies, H. and Akerboom, T.P.M. (1984) Glutathione disufide (GSSG) efflux from cells and tissues. Methods Enzymol. 105, 445–451.

    PubMed  CAS  Google Scholar 

  • Singh, A. (1989) Chemical and biochemical aspects of activated oxygen: singlet oxygen, superoxide anion, and related species. In CRC Handbook of Free Radicals and Antioxidants in Biomedicine ( J. Miquel, A.T. Quintanilha and H. Weber, eds.), CRC Press, Boca Raton, FL pp. 17–28.

    Google Scholar 

  • Singh, S.V., Leal, T., Ansari, G.A.S. and Awasthi, Y.C. (1987) Purification and characterization of glutathione S-transferases of human kidney. Biochem. J. 246, 179–186.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (1992) Protein oxidation and aging. Science 257, 1220–1224.

    PubMed  CAS  Google Scholar 

  • Stallings, W.C., Pattridge, K., Strong, R.K., et al. (1984) Manganese and iron superoxide dismutase are structural homologues. J. Biol. Chem. 259, 10695–10699.

    PubMed  CAS  Google Scholar 

  • Steinman, H.M. (1982) Copper-zinc superoxide dismutase from Caulobacter crecentus. J. Biol. Chem. 257, 10283–10293.

    PubMed  CAS  Google Scholar 

  • Summers, C.B. and Felton, G.W. (1993) Antioxidant role of dehydroascorbic acid reductase in insects. Biochim. Biophys. Acta 1156, 235–238.

    PubMed  CAS  Google Scholar 

  • Tainer, J.A., Getzoff, E.D., Richardson, J.S. and Richardson, D.C. (1983) Structure and Mechanism of copper, zinc-superoxide dismutase. Nature 306, 284–287.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Avissar, N., Whitin, J. and Cohen, H. (1987) Purification and characterization of human plasma glutathione peroxidase: A selenoglycoprotein distinct from the known cellular enzyme. Arch. Biochem. Biophys. 256, 677–686.

    PubMed  CAS  Google Scholar 

  • Tan, K.H., Meyer, D.J., Coles, B. and Ketterer, B. (1986) Thymine hydroperoxide, a substrate for rat Se-dependent glutathione peroxidase and glutathione transferase isoenzymes. FEBS Lett. 207, 231–233.

    PubMed  CAS  Google Scholar 

  • Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A. and Ames, B.N. (1990) Alkyl hydroperoxidase reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductase. J. Biol. Chem. 265, 10535–10540.

    PubMed  CAS  Google Scholar 

  • Ursini, F., Maiorino, M., Valente, M., Ferri, L. and Gregolin, C. (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activities on phospha-tidylcholine hydroperoxides. Biochim. Biophys. Acta 839, 197–211.

    Google Scholar 

  • van Kuijk, F.J.G.M., Sevanian, A., Handelman, G.J. and Dratz, E.A. (1987) A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. TIBS 12, 31–34.

    Google Scholar 

  • Weinhold, L.C., Ahmad, S. and Pardini, R.S. (1990) Insect glutathione-S-transferase: a predictor of allelochemical and oxidative stress. Comp. Biochem. Physiol. 95B, 355–363.

    Google Scholar 

  • Weiss, L. (1983) The cell. In Histology: Cell and Tissue Biology (L. Weiss, ed.), 5th edition, Elsevier, New York.

    Google Scholar 

  • Weitzel, F., Ursini, F. and Wendel, A. (1990) Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and depletion. Biochim. Biophys. Acta 1036, 88–94.

    PubMed  CAS  Google Scholar 

  • Williams, C.H. (1992) Lipomide dehydrogenase, glutathione reductase, thioredoxin reductase and mercuric ion reductase—a family of flavoenzyme transhydrogenases. In Chemistry and Biochemistry of Flavoenzymes, Vol. III ( F. Muller, ed.), CRC Press, Boca Raton, FL, pp. 121–211.

    Google Scholar 

  • Yoshimura, S., Watanabe, K., Suemuzu, H., Onozawa, T., Mizoguchi, J., Tsuda, K., Hatta, H. and Moriuchi, T. (1991) Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J. Biochem. (Tokyo) 109, 918–923.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Ahmad, S. (1995). Antioxidant Mechanisms of Enzymes and Proteins. In: Ahmad, S. (eds) Oxidative Stress and Antioxidant Defenses in Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9689-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9689-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9691-2

  • Online ISBN: 978-1-4615-9689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics